An a posteriori Fourier regularization method for identifying the unknown source of the space-fractional diffusion equation

被引:34
作者
Li, Xiao-Xiao [1 ]
Lei, Jin Li [1 ]
Yang, Fan [1 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
unknown source; space-fractional diffusion equation; Fourier regularization method; a posteriori parameter choice; error estimate; DEPENDENT HEAT-SOURCE; INVERSE SOURCE PROBLEM; SOURCE-TERM; DIFFERENCE APPROXIMATIONS; ANOMALOUS DIFFUSION; RANDOM-WALK;
D O I
10.1186/1029-242X-2014-434
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we identify the unknown source which depends only on spatial variable for a fractional diffusion equation using the Fourier method. Not alike the previous literature, we propose to choose the regularization parameter by an a posteriori rule, with which we can obtain error estimate of Holder type between the exact solution and the regularized approximation. Numerical simulations show that the proposed scheme is effective and stable.
引用
收藏
页数:13
相关论文
共 34 条
[1]   The method of fundamental solutions for the inverse space-dependent heat source problem [J].
Ahmadabadi, M. Nili ;
Arab, M. ;
Ghaini, F. M. Maalek .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (10) :1231-1235
[2]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[3]   Structural identification of an unknown source term in a heat equation [J].
Cannon, JR ;
DuChateau, P .
INVERSE PROBLEMS, 1998, 14 (03) :535-551
[4]   Fourth Order Difference Approximations for Space Riemann-Liouville Derivatives Based on Weighted and Shifted Lubich Difference Operators [J].
Chen, Minghua ;
Deng, Weihua .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (02) :516-540
[5]   FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1418-1438
[6]   Superlinearly convergent algorithms for the two-dimensional space-time Caputo-Riesz fractional diffusion equation [J].
Chen, Minghua ;
Deng, Weihua ;
Wu, Yujiang .
APPLIED NUMERICAL MATHEMATICS, 2013, 70 :22-41
[7]   Identifying an unknown source term in a spherically symmetric parabolic equation [J].
Cheng, Wei ;
Fu, Chu-Li .
APPLIED MATHEMATICS LETTERS, 2013, 26 (04) :387-391
[8]   Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation [J].
Dou, Fang-Fang ;
Fu, Chu-Li ;
Yang, Feng-Lian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) :728-737
[9]   Wavelet and Fourier methods for solving the sideways heat equation [J].
Eldén, L ;
Berntsson, F ;
Reginska, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2187-2205
[10]   Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation [J].
Ervin, Vincent J. ;
Heuer, Norbert ;
Roop, John Paul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :572-591