Frequency tripled 1.5 μm telecom laser diode stabilized to iodine hyperfine line in the 10-15 range

被引:0
作者
Philippe, Charles [1 ]
Le Targat, Rodolphe [1 ]
Holleville, David [1 ]
Lours, Michel [1 ]
Tuan Minh-Pham [2 ]
Hrabina, Jan [2 ]
Du Burck, Frederic [3 ]
Wolf, Peter [1 ]
Acef, Ouali [1 ]
机构
[1] Univ Paris 06, Sorbonne Univ, PSL Res Univ, LNE SYRTE,CNRS,Observ Paris, F-75014 Paris, France
[2] Czech Acad Sci, Inst Sci Instruments, Brno, Czech Republic
[3] Univ Paris 13, Lab Phys Lasers, Sorbonne Paris Cite, F-93430 Villetaneuse, France
来源
2016 EUROPEAN FREQUENCY AND TIME FORUM (EFTF) | 2016年
关键词
Optical frequency standards; measurement and metrology; Lasers; Laser stabilization; Visible lasers; Harmonic generation and mixing; High resolution spectroscopy; MOLECULAR-IODINE; TRANSITIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We report on telecom laser frequency stabilization to narrow iodine hyperfine line in the green range of the optical domain, after a frequency tripling process using two nonlinear PPLN crystals. We have generated up to 300 mW optical power in the green (P-3 omega), from 800 mW of infrared power (P-omega). This result corresponds to an optical conversion efficiency eta = P-3 omega/P-omega similar to 36 %. To our knowledge, this is the best value ever demonstrated for a CW frequency tripling process. We have used a narrow linewidth iodine hyperfine line (component a(1) of the I-127(2) R 35 (44-0) line) to stabilize the IR laser yielding to frequency stability of 4.8x10(-14)tau(-1/2) with a minimum value of 6x10(-15) reached after 50 s of integration time. The whole optical setup is very compact and mostly optically fibered. This approach opens the way for efficient and elegant architecture development for space applications as one of several potential uses.
引用
收藏
页数:3
相关论文
共 18 条
  • [1] [Anonymous], IN PRESS
  • [2] Prototype of an ultra-stable optical cavity for space applications.
    Argence, B.
    Prevost, E.
    Leveque, T.
    Le Goff, R.
    Bize, S.
    Lemonde, P.
    Santarelli, G.
    [J]. OPTICS EXPRESS, 2012, 20 (23): : 25409 - 25420
  • [3] Satellite-satellite laser links for future gravity missions
    Bender, PL
    Hall, JL
    Ye, J
    Klipstein, WM
    [J]. SPACE SCIENCE REVIEWS, 2003, 108 (1-2) : 377 - 384
  • [4] Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm)
    Cheng, WY
    Chen, LS
    Yoon, TH
    Hall, JL
    Ye, J
    [J]. OPTICS LETTERS, 2002, 27 (08) : 571 - 573
  • [5] Optical phase locking of two infrared continuous wave lasers separated by 100 THz
    Chiodo, N.
    Du-Burck, F.
    Hrabina, J.
    Lours, M.
    Chea, E.
    Acef, O.
    [J]. OPTICS LETTERS, 2014, 39 (10) : 2936 - 2939
  • [6] Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides
    Corcoran, B.
    Monat, C.
    Grillet, C.
    Moss, D. J.
    Eggleton, B. J.
    White, T. P.
    O'Faolain, L.
    Krauss, T. F.
    [J]. NATURE PHOTONICS, 2009, 3 (04) : 206 - 210
  • [7] Doringshoff K, 2010, 24 EUROPEAN FREQUENC
  • [8] Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy
    Fujimoto, JG
    Pitris, C
    Boppart, SA
    Brezinski, ME
    [J]. NEOPLASIA, 2000, 2 (1-2): : 9 - 25
  • [9] Gerstenkorn S., 1978, ATLAS SPECTRE ABSORP
  • [10] Nobel Lecture: Defining and measuring optical frequencies
    Hall, John L.
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (04) : 1279 - 1295