Quasideterminants

被引:229
作者
Gelfand, I
Gelfand, S
Retakh, V
Wilson, RL
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
quasideterminants; noncommutative algebra; symmetric functions;
D O I
10.1016/j.aim.2004.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The determinant is a main organizing toot in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division ring. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 141
页数:86
相关论文
共 77 条
  • [1] ALESKER S, 2002, ARXIVMATHCV010429
  • [2] [Anonymous], 1996, GELFAND MATH SEMINAR
  • [3] Artin E., 1988, GEOMETRIC ALGEBRA
  • [4] Quaternionic determinants
    Aslaksen, H
    [J]. MATHEMATICAL INTELLIGENCER, 1996, 18 (03) : 57 - 65
  • [5] BEREZIN FA, 1983, INTRO ALGEBRA ANAL A
  • [6] KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS
    BIRMAN, JS
    WILLIAMS, RF
    [J]. TOPOLOGY, 1983, 22 (01) : 47 - 82
  • [7] Cartier P., 1969, LECT NOTES MATH
  • [8] Cayley A., 1845, PHILOS MAG, V26, P141
  • [9] COHN PM, 1977, LONDON MATH SOC LECT, V27
  • [10] Matrix Vieta theorem revisited
    Connes, A
    Schwarz, A
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (04) : 349 - 353