Quasideterminants

被引:236
作者
Gelfand, I
Gelfand, S
Retakh, V
Wilson, RL
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
quasideterminants; noncommutative algebra; symmetric functions;
D O I
10.1016/j.aim.2004.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The determinant is a main organizing toot in commutative linear algebra. In this review we present a theory of the quasideterminants defined for matrices over a division ring. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 141
页数:86
相关论文
共 77 条
[1]  
ALESKER S, 2002, ARXIVMATHCV010429
[2]  
[Anonymous], 1996, GELFAND MATH SEMINAR
[3]  
Artin E., 1988, GEOMETRIC ALGEBRA
[4]   Quaternionic determinants [J].
Aslaksen, H .
MATHEMATICAL INTELLIGENCER, 1996, 18 (03) :57-65
[5]  
BEREZIN FA, 1983, INTRO ALGEBRA ANAL A
[6]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[7]  
Cartier P., 1969, LECT NOTES MATH
[8]  
Cayley A., 1845, PHILOS MAG, V26, P141
[9]  
COHN PM, 1977, LONDON MATH SOC LECT, V27
[10]   Matrix Vieta theorem revisited [J].
Connes, A ;
Schwarz, A .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (04) :349-353