Real-time Pedestrian Detection for Autonomous Driving

被引:0
作者
Yang, Zhiheng [1 ,3 ]
Li, Jun [1 ,2 ]
Li, Huiyun [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Elect Engn & Automat, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Key Lab Optoelect Informat Proc, Guilin 541004, Peoples R China
[3] Chinese Univ Hong Kong, Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 3518055, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS) | 2018年
基金
中国国家自然科学基金;
关键词
pedestrian detection; feature box sizes; pedestrian characteristics; Darknet;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fast and efficient pedestrian detection technology has become an increasingly important task in the autonomous driving technology. Traditional pedestrian detection algorithms are usually too time-consuming to meet the real-time requirements of autonomous driving. In this paper, we propose a new pedestrian detection algorithm based on the Darknet with optimized feature concatenation, hard negative mining, multi-scale training, model pretraining, and proper calibration of key parameters. In view of the characteristics of pedestrian detection system, we adopt the priori experience about the feature box sizes, instead of K-mean clustering algorithm. We also conduct statistical analysis on the dataset pedestrian label, and design the initial value of the pre-selection box that is more in line with pedestrian characteristics. The proposed algorithm not only improves the detection accuracy, but also enhances the efficiency of pedestrian detection. Experimental results on traffic record benchmark demonstrate that the optimized algorithm satisfies the real-time and accuracy requirements of the low-speed autonomous driving.
引用
收藏
页码:9 / 13
页数:5
相关论文
共 17 条
[1]   Ten Years of Pedestrian Detection, What Have We Learned? [J].
Benenson, Rodrigo ;
Omran, Mohamed ;
Hosang, Jan ;
Schiele, Bernt .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 :613-627
[2]  
Dai J., 2016, ADV NEURAL INFORM PR, V29, P379, DOI [DOI 10.1016/J.JPOWSOUR.2007.02.075, DOI 10.48550/ARXIV.1605.06409, DOI 10.1109/CVPR.2017.690]
[3]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   Pedestrian Detection: An Evaluation of the State of the Art [J].
Dollar, Piotr ;
Wojek, Christian ;
Schiele, Bernt ;
Perona, Pietro .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (04) :743-761
[6]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[7]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[8]  
Girshick R., 2014, P IEEE C COMP VIS PA, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81, 10.1109/cvpr.2014.81]
[9]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778