AutoProstate: Towards Automated Reporting of Prostate MRI for Prostate Cancer Assessment Using Deep Learning

被引:15
作者
Mehta, Pritesh [1 ,2 ]
Antonelli, Michela [2 ]
Singh, Saurabh [3 ]
Grondecka, Natalia [4 ]
Johnston, Edward W. [5 ]
Ahmed, Hashim U. [6 ]
Emberton, Mark [7 ]
Punwani, Shonit [3 ]
Ourselin, Sebastien [2 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, London WC1E 6BT, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London SE1 7EH, England
[3] UCL, Ctr Med Imaging, London WC1E 6BT, England
[4] Med Univ Lublin, Dept Med Radiol, PL-20059 Lublin, Poland
[5] Royal Marsden Hosp, Intervent Radiol, London SW3 6JJ, England
[6] Imperial Coll London, Fac Med, Dept Surg & Canc, Imperial Prostate, London SW7 2AZ, England
[7] UCL, Fac Med Sci, Div Surg & Intervent Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
automatic report; computer-aided diagnosis; convolutional neural network; deep learning; lesion detection; lesion classification; magnetic resonance imaging; prostate cancer; segmentation; COMPUTER-AIDED DETECTION; MULTIPARAMETRIC MRI; DIAGNOSTIC-ACCURACY; SEGMENTATION;
D O I
10.3390/cancers13236138
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary International guidelines recommend multiparametric magnetic resonance imaging (mpMRI) of the prostate for use by radiologists to identify lesions containing clinically significant prostate cancer, prior to confirmatory biopsy. Automatic assessment of prostate mpMRI using artificial intelligence algorithms holds a currently unrealized potential to improve the diagnostic accuracy achievable by radiologists alone, improve the reporting consistency between radiologists, and enhance reporting quality. In this work, we introduce AutoProstate: a deep learning-powered framework for automatic MRI-based prostate cancer assessment. In particular, AutoProstate utilizes patient data and biparametric MRI to populate an automatic web-based report which includes segmentations of the whole prostate, prostatic zones, and candidate clinically significant prostate cancer lesions, and in addition, several derived characteristics with clinical value are presented. Notably, AutoProstate performed well in external validation using the PICTURE study dataset, suggesting value in prospective multicentre validation, with a view towards future deployment into the prostate cancer diagnostic pathway. Multiparametric magnetic resonance imaging (mpMRI) of the prostate is used by radiologists to identify, score, and stage abnormalities that may correspond to clinically significant prostate cancer (CSPCa). Automatic assessment of prostate mpMRI using artificial intelligence algorithms may facilitate a reduction in missed cancers and unnecessary biopsies, an increase in inter-observer agreement between radiologists, and an improvement in reporting quality. In this work, we introduce AutoProstate, a deep learning-powered framework for automatic MRI-based prostate cancer assessment. AutoProstate comprises of three modules: Zone-Segmenter, CSPCa-Segmenter, and Report-Generator. Zone-Segmenter segments the prostatic zones on T2-weighted imaging, CSPCa-Segmenter detects and segments CSPCa lesions using biparametric MRI, and Report-Generator generates an automatic web-based report containing four sections: Patient Details, Prostate Size and PSA Density, Clinically Significant Lesion Candidates, and Findings Summary. In our experiment, AutoProstate was trained using the publicly available PROSTATEx dataset, and externally validated using the PICTURE dataset. Moreover, the performance of AutoProstate was compared to the performance of an experienced radiologist who prospectively read PICTURE dataset cases. In comparison to the radiologist, AutoProstate showed statistically significant improvements in prostate volume and prostate-specific antigen density estimation. Furthermore, AutoProstate matched the CSPCa lesion detection sensitivity of the radiologist, which is paramount, but produced more false positive detections.
引用
收藏
页数:21
相关论文
共 53 条
  • [1] Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
    Ahmed, Hashim U.
    Bosaily, Ahmed El-Shater
    Brown, Louise C.
    Gabe, Rhian
    Kaplan, Richard
    Parmar, Mahesh K.
    Collaco-Moraes, Yolanda
    Ward, Katie
    Hindley, Richard G.
    Freeman, Alex
    Kirkham, Alex P.
    Oldroyd, Robert
    Parker, Chris
    Emberton, Mark
    [J]. LANCET, 2017, 389 (10071) : 815 - 822
  • [2] Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net
    Aldoj, Nader
    Biavati, Federico
    Michallek, Florian
    Stober, Sebastian
    Dewey, Marc
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] GAS: A genetic atlas selection strategy in multi-atlas segmentation framework
    Antonelli, Michela
    Cardoso, M. Jorge
    Johnston, Edward W.
    Appayya, Mrishta Brizmohun
    Presles, Benoit
    Modat, Marc
    Punwani, Shonit
    Ourselin, Sebastien
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 52 : 97 - 108
  • [4] National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting
    Appayya, Mrishta Brizmohun
    Adshead, Jim
    Ahmed, Hashim U.
    Allen, Clare
    Bainbridge, Alan
    Barrett, Tristan
    Giganti, Francesco
    Graham, John
    Haslam, Phil
    Johnston, Edward W.
    Kastner, Christof
    Kirkham, Alexander P. S.
    Lipton, Alexandra
    McNeill, Alan
    Moniz, Larissa
    Moore, Caroline M.
    Nabi, Ghulam
    Padhani, Anwar R.
    Parker, Chris
    Patel, Amit
    Pursey, Jacqueline
    Richenberg, Jonathan
    Staffurth, John
    van der Meulen, Jan
    Walls, Darren
    Punwani, Shonit
    [J]. BJU INTERNATIONAL, 2018, 122 (01) : 13 - 25
  • [5] Computed Diffusion-weighted MR Imaging May Improve Tumor Detection
    Blackledge, Matthew D.
    Leach, Martin O.
    Collins, David J.
    Koh, Dow-Mu
    [J]. RADIOLOGY, 2011, 261 (02) : 573 - 581
  • [6] Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board
    Bluemke, David A.
    Moy, Linda
    Bredella, Miriam A.
    Ertl-Wagner, Birgit B.
    Fowler, Kathryn J.
    Goh, Vicky J.
    Halpern, Elkan F.
    Hess, Christopher P.
    Schiebler, Mark L.
    Weiss, Clifford R.
    [J]. RADIOLOGY, 2020, 294 (03) : 487 - 489
  • [7] Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values
    Bonekamp, David
    Kohl, Simon
    Wiesenfarth, Manuel
    Schelb, Patrick
    Radtke, Jan Philipp
    Goetz, Michael
    Kickingereder, Philipp
    Yaqubi, Kaneschka
    Hitthaler, Bertram
    Gaehlert, Nils
    Kuder, Tristan Anselm
    Deister, Fenja
    Freitag, Martin
    Hohenfellner, Markus
    Hadaschik, Boris A.
    Schlemmer, Heinz-Peter
    Maier-Hein, Klaus H.
    [J]. RADIOLOGY, 2018, 289 (01) : 128 - 137
  • [8] What Are We Missing? False-Negative Cancers at Multiparametric MR Imaging of the Prostate
    Borofsky, Samuel
    George, Arvin K.
    Gaur, Sonia
    Bernardo, Marcelino
    Greer, Matthew D.
    Mertan, Francesca V.
    Taffel, Myles
    Moreno, Vanesa
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. RADIOLOGY, 2018, 286 (01) : 186 - 195
  • [9] Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1
    Brembilla, Giorgio
    Dell'Oglio, Paolo
    Stabile, Armando
    Damascelli, Anna
    Brunetti, Lisa
    Ravelli, Silvia
    Cristel, Giulia
    Schiani, Elena
    Venturini, Elena
    Grippaldi, Daniele
    Mendola, Vincenzo
    Rancoita, Paola Maria Vittoria
    Esposito, Antonio
    Briganti, Alberto
    Montorsi, Francesco
    Del Maschio, Alessandro
    De Cobelli, Francesco
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (06) : 3383 - 3392
  • [10] Iconic feature based nonrigid registration: the PASHA algorithm
    Cachier, P
    Bardinet, E
    Dormont, D
    Pennec, X
    Ayache, N
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) : 272 - 298