Convex functions and barycenter on CAT(1)-spaces of small radii

被引:18
作者
Yokota, Takumi [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
CAT(1)-space; convex function; barycenter; Banach-Saks property; CENTER-OF-MASS; HARMONIC MAPS; METRIC-SPACES; ERGODIC THEOREM; CURVATURE; UNIQUENESS; EXISTENCE; VALUES;
D O I
10.2969/jmsj/06831297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the convexity of a certain function discovered by W. Kendall on small metric balls in CAT(1)-spaces to show that any probability measure on a complete CAT(1)-space of small radius admits a unique barycenter. We also present various properties of barycenter on those spaces. This extends the results previously known for CAT(0)-spaces and CAT(1)-spaces of small diameter.
引用
收藏
页码:1297 / 1323
页数:27
相关论文
共 50 条
[41]   Restricted Weak Upper Semi-continuity of Subdifferentials of Convex Functions on Banach Spaces [J].
Xi Yin Zheng ;
Kung Fu Ng .
Set-Valued Analysis, 2008, 16 :245-255
[42]   Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains [J].
Abanin, A. V. ;
Ishimura, R. ;
Khoi, Le Hai .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01) :96-110
[43]   Restricted weak upper semi-continuity of subdifferentials of convex functions on Banach spaces [J].
Zheng, Xi Yin ;
Ng, Kung Fu .
SET-VALUED ANALYSIS, 2008, 16 (2-3) :245-255
[44]   Measure of Non-Radon-Nikodym property and differentiability of convex functions on banach spaces [J].
Zheng, XY .
SET-VALUED ANALYSIS, 2005, 13 (02) :181-196
[45]   Measure of Non-Radon–Nikodym Property and Differentiability of Convex Functions on Banach Spaces [J].
Xi Yin Zheng .
Set-Valued Analysis, 2005, 13 :181-196
[46]   Operator Popoviciu's inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces [J].
Alomari, Mohammad W. .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) :313-324
[47]   Regularity of harmonic maps from polyhedra to CAT(1) spaces [J].
Breiner, Christine ;
Fraser, Ailana ;
Huang, Lan-Hsuan ;
Mese, Chikako ;
Sargent, Pam ;
Zhang, Yingying .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
[48]   CONVEX FUNCTIONS ON SYMMETRIC SPACES, SIDE LENGTHS OF POLYGONS AND THE STABILITY INEQUALITIES FOR WEIGHTED CONFIGURATIONS AT INFINITY [J].
Kapovich, Michael ;
Leeb, Bernhard ;
Millson, John .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (02) :297-354
[49]   Second derivatives of convex functions in the sense of A. D. Aleksandrov on infinite-dimensional spaces with measure [J].
Bogachev, VI ;
Goldys, B .
MATHEMATICAL NOTES, 2006, 79 (3-4) :454-467
[50]   Second derivatives of convex functions in the sense of A. D. Aleksandrov on infinite-dimensional spaces with measure [J].
V. I. Bogachev ;
B. Goldys .
Mathematical Notes, 2006, 79 :454-467