Convex functions and barycenter on CAT(1)-spaces of small radii

被引:18
作者
Yokota, Takumi [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
CAT(1)-space; convex function; barycenter; Banach-Saks property; CENTER-OF-MASS; HARMONIC MAPS; METRIC-SPACES; ERGODIC THEOREM; CURVATURE; UNIQUENESS; EXISTENCE; VALUES;
D O I
10.2969/jmsj/06831297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the convexity of a certain function discovered by W. Kendall on small metric balls in CAT(1)-spaces to show that any probability measure on a complete CAT(1)-space of small radius admits a unique barycenter. We also present various properties of barycenter on those spaces. This extends the results previously known for CAT(0)-spaces and CAT(1)-spaces of small diameter.
引用
收藏
页码:1297 / 1323
页数:27
相关论文
共 50 条
[31]   On the second conjugate of several convex functions in general normed vector spaces [J].
Zalinescu, Constantin .
JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (1-3) :475-487
[32]   Continuous Frechet Differentiability of the Moreau Envelope of Convex Functions on Banach Spaces [J].
Pham Duy Khanh ;
Bao Tran Nguyen .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 195 (03) :1007-1018
[33]   On the second conjugate of several convex functions in general normed vector spaces [J].
Constantin Zălinescu .
Journal of Global Optimization, 2008, 40 :475-487
[34]   Surface groups acting on CAT(-1) spaces [J].
Daskalopoulos, Georgios ;
Mese, Chikako ;
Sanders, Andrew ;
Vdovina, Alina .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :1843-1856
[35]   Continuous Fréchet Differentiability of the Moreau Envelope of Convex Functions on Banach Spaces [J].
Pham Duy Khanh ;
Bao Tran Nguyen .
Journal of Optimization Theory and Applications, 2022, 195 :1007-1018
[36]   Asymptotic Behavior of Resolvents of a Convergent Sequence of Convex Functions on Complete Geodesic Spaces [J].
Kimura, Yasunori ;
Shindo, Keisuke .
AXIOMS, 2022, 11 (01)
[37]   A generalized sequential formula for subdifferentials of sums of convex functions defined on banach spaces [J].
Thibault, L .
RECENT DEVELOPMENTS IN OPTIMIZATION, 1995, 429 :340-345
[38]   Sharp inequalities of Ostrowski type for convex functions defined on linear spaces and application [J].
Kikianty, Eder ;
Dragomir, S. S. ;
Cerone, P. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) :2235-2246
[39]   Gâteaux differentiability and uniform monotone approximation of convex functions in Banach spaces [J].
S. Shang .
Acta Mathematica Hungarica, 2021, 164 :265-281
[40]   Infinite Product and Its Convergence in CAT(1) Spaces [J].
Termkaew, Sakan ;
Chaipunya, Parin ;
Kohsaka, Fumiaki .
MATHEMATICS, 2023, 11 (08)