Light-Inducible Recombinases for Bacterial Optogenetics

被引:43
|
作者
Sheets, Michael B. [1 ]
Wong, Wilson W. [1 ]
Dunlop, Mary J. [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
来源
ACS SYNTHETIC BIOLOGY | 2020年 / 9卷 / 02期
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
optogenetics; recombinase; photoactivation; inducible recombinase; Cre; ESCHERICHIA-COLI; GENE-EXPRESSION; CRE RECOMBINASE; PROTEIN INTERACTIONS; SYSTEMS; FLEXIBILITY; ACTIVATION; CIRCUITS; SCALE;
D O I
10.1021/acssynbio.9b00395
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for Escherichia coli that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.
引用
收藏
页码:227 / 235
页数:17
相关论文
共 50 条
  • [1] Light-Inducible Recombinases for Bacterial Optogenetics (vol 9, pg 227, 2020)
    Sheets, Michael B.
    Wong, Wilson W.
    Dunlop, Mary J.
    ACS SYNTHETIC BIOLOGY, 2020, 9 (10): : 2857 - 2859
  • [2] Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide
    Hallett, Ryan A.
    Zimmerman, Seth P.
    Yumerefendi, Hayretin
    Bear, James E.
    Kuhlman, Brian
    ACS SYNTHETIC BIOLOGY, 2016, 5 (01): : 53 - 64
  • [3] Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast
    Rojas, Vicente
    Larrondo, Luis F.
    ACS SYNTHETIC BIOLOGY, 2022, 12 (01): : 71 - 82
  • [4] High-performance chemical- and light-inducible recombinases in mammalian cells and mice
    Benjamin H. Weinberg
    Jang Hwan Cho
    Yash Agarwal
    N. T. Hang Pham
    Leidy D. Caraballo
    Maciej Walkosz
    Charina Ortega
    Micaela Trexler
    Nathan Tague
    Billy Law
    William K. J. Benman
    Justin Letendre
    Jacob Beal
    Wilson W. Wong
    Nature Communications, 10
  • [5] High-performance chemical- and light-inducible recombinases in mammalian cells and mice
    Weinberg, Benjamin H.
    Cho, Jang Hwan
    Agarwal, Yash
    Pham, N. T. Hang
    Caraballo, Leidy D.
    Walkosz, Maciej
    Ortega, Charina
    Trexler, Micaela
    Tague, Nathan
    Law, Billy
    Benman, William K. J.
    Letendre, Justin
    Beal, Jacob
    Wong, Wilson W.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Regulating Angiogenesis with Light-Inducible AntimiRs
    Schaefer, Florian
    Wagner, Jasmin
    Knau, Andrea
    Dimmeler, Stefanie
    Heckel, Alexander
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (51) : 13558 - 13561
  • [7] Fluorescent proteins as light-inducible photochemical partners
    Lukyanov, Konstantin A.
    Serebrovskaya, Ekaterina O.
    Lukyanov, Sergey
    Chudakov, Dmitriy M.
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2010, 9 (10) : 1301 - 1306
  • [8] An optogenetic toolkit for light-inducible antibiotic resistance
    Michael B. Sheets
    Nathan Tague
    Mary J. Dunlop
    Nature Communications, 14 (1)
  • [9] An optogenetic toolkit for light-inducible antibiotic resistance
    Sheets, Michael B.
    Tague, Nathan
    Dunlop, Mary J.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Light-inducible stress plastid proteins of phototrophs
    Yurina, N. P.
    Mokerova, D. V.
    Odintsova, M. S.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2013, 60 (05) : 577 - 588