Effect of auxetic structures on crash behavior of cylindrical tube

被引:119
作者
Lee, Wonjoo [1 ]
Jeong, Yuhyeong [1 ]
Yoo, Jesung [2 ]
Huh, Hoon [2 ]
Park, Sung-Jun [3 ]
Park, Sung Hyuk [4 ]
Yoon, Jonghun [1 ]
机构
[1] Hanyang Univ, Dept Mech Engn, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Mech Aerosp & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Korea Natl Univ Transportat, Dept Mech Engn, 50 Daehak Ro, Chungju 380702, Chungcheongbuk, South Korea
[4] Kyungpook Natl Univ, Sch Mat Sci & Engn, 80 Daehakro, Daegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
Auxetic structure; 3D printing; Axial crash; Specific energy absorption; NEGATIVE POISSON RATIO; MECHANICAL-PROPERTIES; ENERGY-ABSORPTION; MONTE-CARLO; IMPACT; COMPOSITE; PANELS; RESISTANCE; TENSION; FABRICS;
D O I
10.1016/j.compstruct.2018.10.068
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper mainly concerns effects of the auxetic structure on the crash performances in terms of the axial crash force, specific energy absorption, and deceleration, which are evaluated with the conventional and honeycomb structures. Based on the systematic design procedure, the re-entrant units for the auxetic structure are regularly arranged in the tube wall, which are produced by the additive manufacturing with SUS316L metal powder. Under the low impact condition, the auxetic does not only exhibit higher specific energy absorption, but also demonstrate substantially low deceleration due to effect of the densification during the axial crash compared with the conventional tube. Furthermore, while the honeycomb tube demonstrates oscillating behavior in the deceleration, the auxetic tube tends to maintain steady deceleration after the first peak during the axial crash, which is able to guarantee enhanced damping performances under the low impact condition.
引用
收藏
页码:836 / 846
页数:11
相关论文
共 56 条
[1]   The effect of processing parameters on the mechanical properties of auxetic polymeric fibers [J].
Alderson, K. L. ;
Alderson, A. ;
Davies, P. J. ;
Smart, G. ;
Ravirala, N. ;
Simkins, G. .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (19) :7991-8000
[2]   The strain dependent indentation resilience of auxetic microporous polyethylene [J].
Alderson, KL ;
Fitzgerald, A ;
Evans, KE .
JOURNAL OF MATERIALS SCIENCE, 2000, 35 (16) :4039-4047
[3]   THE FABRICATION OF MICROPOROUS POLYETHYLENE HAVING A NEGATIVE POISSON RATIO [J].
ALDERSON, KL ;
EVANS, KE .
POLYMER, 1992, 33 (20) :4435-4438
[4]   Tensile fatigue of conventional and negative Poisson's ratio open cell PU foams [J].
Bezazi, Abderrezak ;
Scarpa, Fabrizio .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (03) :488-494
[5]   Stiffness and energy dissipation in polyurethane auxetic foams [J].
Bianchi, Matteo ;
Scarpa, Fabrizio L. ;
Smith, Christopher W. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (17) :5851-5860
[6]   Tailoring Poisson's ratio by introducing auxetic layers [J].
Bilski, Mikolaj ;
Wojciechowski, Krzysztof W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (07) :1318-1323
[7]   Dynamic behaviour of auxetic gradient composite hexagonal honeycombs [J].
Boldrin, L. ;
Hummel, S. ;
Scarpa, F. ;
Di Maio, D. ;
Lira, C. ;
Ruzzene, M. ;
Remillat, C. D. L. ;
Lim, T. C. ;
Rajasekaran, R. ;
Patsias, S. .
COMPOSITE STRUCTURES, 2016, 149 :114-124
[8]   Energy absorption property of warp-knitted spacer fabrics with negative Possion's ratio under low velocity impact [J].
Chang, Yuping ;
Ma, Pibo ;
Jiang, Gaoming .
COMPOSITE STRUCTURES, 2017, 182 :471-477
[9]   On the effect of the Poisson's ratio (positive and negative) on the stability of pressure vessel heads [J].
Ellul, Brian ;
Muscat, Martin ;
Grima, Joseph N. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09) :2025-2032
[10]   MICROPOROUS MATERIALS WITH NEGATIVE POISSON RATIOS .2. MECHANISMS AND INTERPRETATION [J].
EVANS, KE ;
CADDOCK, BD .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (12) :1883-1887