A CHARACTERIZATION OF QUADRIC CONSTANT GAUSS-KRONECKER CURVATURE HYPERSURFACES OF SPHERES

被引:0
作者
Perdomo, Oscar M. [1 ]
Wei, Guoxin [2 ]
机构
[1] Cent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Clifford hypersurfaces; Gauss-Kronecker curvature; spheres; ISOPARAMETRIC MINIMAL HYPERSURFACES; SCALAR CURVATURE; HARMONIC-ANALYSIS; STABILITY INDEX;
D O I
10.4310/AJM.2015.v19.n2.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M subset of Sn+1 be a complete orientable hypersurface with constant Gauss-Kronecker curvature G. For any v is an element of Rn+2, let us define the following two real functions l(v), f(v) : M -> R on M by l(v) (x) = < x, v > and f(v) (x) = <nu(x), v > with nu : M -> Sn+1 a Gauss map of M. In this paper, we show that if n = 3, l(v) = lambda f(v) for some nonzero vector v is an element of R-5 and some real number lambda, then M is either totally umbilical (a Euclidean sphere) or M is a cartesian product of Euclidean spheres. We will also show with an example that the completeness condition is needed in the result we just mentioned. We also show that if n = 4, l(v) = lambda f(v) for some nonzero vector v is an element of R-6 and some real number lambda and (lambda(2) - 1)(2) + (G - 1)(2) not equal 0, then M is either totally umbilical (a Euclidean sphere) or M is a cartesian product of Euclidean spheres. Moreover, we will give an example of a complete hypersurface in S-5 with constant Gauss-Kronecker curvature that satisfies the condition l(v) = lambda f (v) for some non zero v, which is neither a totally umbilical hypersurface nor a cartesian product of Euclidean spheres.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 14 条
[1]   A characterization of quadric constant mean curvature hypersurfaces of spheres [J].
Alias, Luis J. ;
Brasil, Aldir, Jr. ;
Perdomo, Oscar .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) :687-703
[2]  
Cecil T. E., 1985, RES NOTES MATH, V107
[3]   The stability index of hypersurfaces with constant scalar curvature in spheres [J].
Cheng, Qing-Ming ;
Li, Haizhong ;
Wei, Guoxin .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (03) :447-453
[4]   On some rigidity results of hypersurfaces in a sphere [J].
Cheng, Qing-Ming ;
Li, Haizhong ;
Wei, Guoxin .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :477-493
[5]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[6]  
Ge, 2012, DIFFERENTIAL GEOMETR, V22, P49
[7]   LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE [J].
Li, Haizhong ;
Suh, Young Jin ;
Wei, Guoxin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (02) :321-329
[8]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351
[9]   Stability index jump for constant mean curvature hypersurfaces of spheres [J].
Perdomo, Oscar ;
Brasil, Aldir, Jr. .
ARCHIV DER MATHEMATIK, 2012, 99 (05) :493-500
[10]   A Characterization of Quadric Constant Scalar Curvature Hypersurfaces of Spheres [J].
Perdomo, Oscar M. ;
Wei, Guoxin .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) :1882-1890