High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing

被引:135
作者
Cheng, Shaoan [1 ,2 ]
Logan, Bruce E. [2 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Dept Energy Engn, Hangzhou 310027, Peoples R China
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Electrode spacing; Hydrogen; High production rate; Microbial electrolysis cell; POWER-GENERATION; WASTE-WATER; MEMBRANE; BIOHYDROGEN;
D O I
10.1016/j.biortech.2010.10.025
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E-ap = 1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3571 / 3574
页数:4
相关论文
共 20 条
[1]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[2]   Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (07) :2426-2432
[3]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[4]   Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J].
Ditzig, Jenna ;
Liu, Hong ;
Logan, Bruce E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2296-2304
[5]   Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms [J].
Fan, Yanzhen ;
Hu, Hongqiang ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (23) :8154-8158
[6]   Hydrogen production using single-chamber membrane-free microbial electrolysis cells [J].
Hu, Hongqiang ;
Fan, Yanzhen ;
Liu, Hong .
WATER RESEARCH, 2008, 42 (15) :4172-4178
[7]   Significance of Biological Hydrogen Oxidation in a Continuous Single-Chamber Microbial Electrolysis Cell [J].
Lee, Hyung-Sool ;
Rittmann, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (03) :948-954
[8]   Fate of H2 in an Upflow Single-Chamber Microbial Electrolysis Cell Using a Metal-Catalyst-Free Cathode [J].
Lee, Hyung-Sool ;
Torres, Cesar I. ;
Parameswaran, Prathap ;
Rittmann, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (20) :7971-7976
[9]   Fermentative hydrogen production from wastewater and solid wastes by mixed cultures [J].
Li, Chenlin ;
Fang, Herbert H. P. .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2007, 37 (01) :1-39
[10]   Electrochemically assisted microbial production of hydrogen from acetate [J].
Liu, H ;
Grot, S ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (11) :4317-4320