Single-channel speech enhancement by subspace affinity minimization

被引:3
|
作者
Tran, Dung N. [1 ]
Koishida, Kazuhito [1 ]
机构
[1] Microsoft Corp, Redmond, WA 98052 USA
来源
关键词
speech enhancement; noise reduction; deep neural network; convolutional neural network; regression; subspace affinity;
D O I
10.21437/Interspeech.2020-2982
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
In data-driven speech enhancement frameworks, learning informative representations is crucial to obtain a high-quality estimate of the target speech. State-of-the-art speech enhancement methods based on deep neural networks (DNN) commonly learn a single embedding from the noisy input to predict clean speech. This compressed representation inevitably contains both noise and speech information leading to speech distortion and poor noise reduction performance. To alleviate this issue, we proposed to learn from the noisy input separate embeddings for speech and noise and introduced a subspace affinity loss function to prevent information leaking between the two representations. We rigorously proved that minimizing this loss function yields maximally uncorrelated speech and noise representations, which can block information leaking. We empirically showed that our proposed framework outperforms traditional and state-of-the-art speech enhancement methods in various unseen nonstationary noise environments. Our results suggest that learning uncorrelated speech and noise embeddings can improve noise reduction and reduces speech distortion in speech enhancement applications.
引用
收藏
页码:2447 / 2451
页数:5
相关论文
共 50 条
  • [1] Weak Speech Recovery for Single-Channel Speech Enhancement
    Wong, Arthur
    Ming, Kok
    Low, Siow Yong
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), VOLS 1-2, 2012, : 627 - 631
  • [2] Phase Processing for Single-Channel Speech Enhancement
    Gerkmann, Timo
    Krawczyk-Becker, Martin
    Le Roux, Jonathan
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) : 55 - 66
  • [3] Single-Channel Speech Enhancement Techniques for Distant Speech Recognition
    Ashwini, Jaya
    Kumaraswamy, Ramaswamy
    JOURNAL OF INTELLIGENT SYSTEMS, 2013, 22 (02) : 81 - 93
  • [4] Single-Channel Speech Enhancement Using Single Dimension Change Accelerated Particle Swarm Optimization for Subspace Partitioning
    Kalpana Ghorpade
    Arti Khaparde
    Circuits, Systems, and Signal Processing, 2023, 42 : 4343 - 4361
  • [5] Single-Channel Speech Enhancement Using Single Dimension Change Accelerated Particle Swarm Optimization for Subspace Partitioning
    Ghorpade, Kalpana
    Khaparde, Arti
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (07) : 4343 - 4361
  • [6] Single-channel Speech Enhancement Student under Multi-channel Speech Enhancement Teacher
    Zhang, Yuzhu
    Zhang, Hui
    Zhang, Xueliang
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 372 - 377
  • [7] Single-Channel Speech Enhancement Based on Psychoacoustic Masking
    Zhou, Tingting
    Zeng, Yumin
    Wang, Rongrong
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2017, 65 (04): : 272 - 284
  • [8] CompNet: Complementary network for single-channel speech enhancement
    Fan, Cunhang
    Zhang, Hongmei
    Li, Andong
    Xiang, Wang
    Zheng, Chengshi
    Lv, Zhao
    Wu, Xiaopei
    NEURAL NETWORKS, 2023, 168 : 508 - 517
  • [9] Single-channel speech enhancement using colored spectrograms
    Gul, Sania
    Khan, Muhammad Salman
    Fazeel, Muhammad
    COMPUTER SPEECH AND LANGUAGE, 2024, 86
  • [10] Comparative Studies of Single-Channel Speech Enhancement Techniques
    Kumar, Bittu
    Kumar, Neeraj
    Kumar, Manoj
    Prasad, S. V. S.
    Varma, Ashwini Kumar
    Ravi, Banoth
    IETE JOURNAL OF RESEARCH, 2024, 70 (06) : 5704 - 5720