Penalized Least Square in Sparse Setting with Convex Penalty and Non Gaussian Errors

被引:1
作者
Abdillahi-Ali, Doualeh [1 ]
Azzaoui, Nourddine [1 ]
Guillin, Arnaud [1 ]
Le Mailloux, Guillaume [1 ]
Matsui, Tomoko [2 ]
机构
[1] Univ Clermont Auvergne UCA, CNRS UMR 6620, Lab Math Blaise Pascal, F-63000 Clermont Ferrand, France
[2] Inst Stat Math, Dept Stat Modeling, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
penalized least squares; Gaussian errors; convex penalty; LASSO;
D O I
10.1007/s10473-021-0624-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper consider the penalized least squares estimators with convex penalties or regularization norms. We provide sparsity oracle inequalities for the prediction error for a general convex penalty and for the particular cases of Lasso and Group Lasso estimators in a regression setting. The main contribution is that our oracle inequalities are established for the more general case where the observations noise is issued from probability measures that satisfy a weak spectral gap (or Poincare) inequality instead of Gaussian distributions. We illustrate our results on a heavy tailed example and a sub Gaussian one; we especially give the explicit bounds of the oracle inequalities for these two special examples.
引用
收藏
页码:2198 / 2216
页数:19
相关论文
共 15 条
  • [1] Barthe F, 2005, APPL MATH RES EXPRES, P39, DOI 10.1155/AMRX.2005.39
  • [2] Bellec P, 2016, INT C MOD PROBL STOC, P315
  • [3] SLOPE MEETS LASSO: IMPROVED ORACLE BOUNDS AND OPTIMALITY
    Bellec, Pierre C.
    Lecue, Guillaume
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2018, 46 (6B) : 3603 - 3642
  • [4] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [5] Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [6] On the Poincare Constant of Log-Concave Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL I, 2020, 2256 : 171 - 217
  • [7] Giraud C, 2014, INTRO HIGH DIMENSION, P157
  • [8] Bounding the Smallest Singular Value of a Random Matrix Without Concentration
    Koltchinskii, Vladimir
    Mendelson, Shahar
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12991 - 13008
  • [9] ORACLE INEQUALITIES AND OPTIMAL INFERENCE UNDER GROUP SPARSITY
    Lounici, Karim
    Pontil, Massimiliano
    van de Geer, Sara
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2011, 39 (04) : 2164 - 2204
  • [10] Learning without Concentration
    Mendelson, Shahar
    [J]. JOURNAL OF THE ACM, 2015, 62 (03)