Numerical simulations of one laser-plasma model based on Poisson structure

被引:6
作者
Li, Yingzhe [1 ,2 ]
Sun, Yajuan [1 ,2 ]
Crouseilles, Nicolas [3 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Rennes, Inria Bretagne Atlantique, Mingus, France
[4] Univ Rennes, ENS Rennes, Mingus, France
基金
中国国家自然科学基金;
关键词
Laser-plasma interaction; Vlasov-Maxwell system; Poisson bracket; Hamiltonian splitting; Conservative splitting; VLASOV-MAXWELL SYSTEM; DISCONTINUOUS GALERKIN METHODS; SEMI-LAGRANGIAN METHOD; SCHEMES; TRANSPORT; CODE;
D O I
10.1016/j.jcp.2019.109172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a bracket structure is proposed for the laser-plasma interaction model introduced in [19], and it is proved by direct calculations that the bracket is Poisson which satisfies the Jacobi identity. Then splitting methods in time are proposed based on the Poisson structure. For the quasi-relativistic case, the Hamiltonian splitting leads to three subsystems which can be solved exactly. The conservative splitting is proposed for the fully relativistic case, and three one-dimensional conservative subsystems are obtained. Combined with the splittings in time, in phase space discretization we use the Fourier spectral and finite volume methods. It is proved that the discrete charge and discrete Poisson equation are conserved by our numerical schemes. Numerically, some numerical experiments are conducted to verify good conservations for the charge, energy and Poisson equation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 39 条
[1]  
[Anonymous], [No title captured]
[2]   Two-dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime [J].
Bégué, ML ;
Ghizzo, A ;
Bertrand, P ;
Sonnendrücker, E ;
Coulaud, O .
JOURNAL OF PLASMA PHYSICS, 1999, 62 :367-388
[3]   A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system [J].
Besse, Nicolas ;
Latu, Guillaume ;
Ghizzo, Alain ;
Sonnendrucker, Eric ;
Bertrand, Pierre .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) :7889-7916
[4]  
Birdsall CK, 1991, PLASMA PHYS VIA COMP
[5]   Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction [J].
Bostan, Mihai ;
Crouseilles, Nicolas .
NUMERISCHE MATHEMATIK, 2009, 112 (02) :169-195
[6]   Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction [J].
Bostan, Mlhal .
QUARTERLY OF APPLIED MATHEMATICS, 2007, 65 (01) :163-187
[7]   Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation [J].
Bowers, K. J. ;
Albright, B. J. ;
Yin, L. ;
Bergen, B. ;
Kwan, T. J. T. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[8]   Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction [J].
Carrillo, JA ;
Labrunie, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (01) :19-57
[9]   Hamiltonian reductions of the one-dimensional Vlasov equation using phase-space moments [J].
Chandre, C. ;
Perin, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[10]   Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system [J].
Cheng, Yingda ;
Christlieb, Andrew J. ;
Zhong, Xinghui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 :145-173