A Bayesian framework for deriving sector-based methane emissions from top-down fluxes

被引:16
作者
Cusworth, Daniel H. [1 ,2 ]
Bloom, A. Anthony [2 ]
Ma, Shuang [2 ]
Miller, Charles E. [2 ]
Bowman, Kevin [2 ]
Yin, Yi [3 ]
Maasakkers, Joannes D. [4 ]
Zhang, Yuzhong [5 ,6 ]
Scarpelli, Tia R. [7 ]
Qu, Zhen [8 ]
Jacob, Daniel J. [7 ,8 ]
Worden, John R. [2 ]
机构
[1] Univ Arizona, Arizona Inst Resilience, Tucson, AZ 85721 USA
[2] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
[3] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[4] SRON Netherlands Inst Space Res, Utrecht, Netherlands
[5] Westlake Univ, Sch Engn, Key Lab Coastal Environm & Resources Zhejiang Pro, Hangzhou, Zhejiang, Peoples R China
[6] Inst Adv Technol, Westlake Inst Adv Study, Hangzhou, Zhejiang, Peoples R China
[7] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA USA
[8] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA USA
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2021年 / 2卷 / 01期
基金
美国国家航空航天局;
关键词
ATMOSPHERIC METHANE; INVERSE ANALYSIS; CH4; EMISSIONS; GOSAT; PRODUCTS; CLIMATE; TROPOMI;
D O I
10.1038/s43247-021-00312-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric methane observations are used to test methane emission inventories as the sum of emissions should correspond to observed methane concentrations. Typically, concentrations are inversely projected to a net flux through an atmospheric chemistry-transport model. Current methods to partition net fluxes to underlying sector-based emissions often scale fluxes based on the relative weight of sectors in a prior inventory. However, this approach imposes correlation between emission sectors which may not exist. Here we present a Bayesian optimal estimation method that projects inverse methane fluxes directly to emission sectors while accounting uncertainty structure and spatial resolution of prior fluxes and emissions. We apply this method to satellite-derived fluxes over the U.S. and at higher resolution over the Permian Basin to demonstrate that we can characterize a sector-based emission budget. This approach provides more robust comparisons between different top-down estimates, critical for assessing the efficacy of policies intended to reduce emissions. Sector-based methane emissions can be backed out from observed methane fluxes, using a Bayesian optimal estimation method. This could help with monitoring gas leaks from industry.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY [J].
Alexe, M. ;
Bergamaschi, P. ;
Segers, A. ;
Detmers, R. ;
Butz, A. ;
Hasekamp, O. ;
Guerlet, S. ;
Parker, R. ;
Boesch, H. ;
Frankenberg, C. ;
Scheepmaker, R. A. ;
Dlugokencky, E. ;
Sweeney, C. ;
Wofsy, S. C. ;
Kort, E. A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :113-133
[2]  
[Anonymous], FCCC/CP/2015/10/Add.1 Decision 1/CP.21
[3]   Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations [J].
Bergamaschi, Peter ;
Karstens, Ute ;
Manning, Alistair J. ;
Saunois, Marielle ;
Tsuruta, Aki ;
Berchet, Antoine ;
Vermeulen, Alexander T. ;
Arnold, Tim ;
Janssens-Maenhout, Greet ;
Hammer, Samuel ;
Levin, Ingeborg ;
Schmidt, Martina ;
Ramonet, Michel ;
Lopez, Morgan ;
Lavric, Jost ;
Aalto, Tuula ;
Chen, Huilin ;
Feist, Dietrich G. ;
Gerbig, Christoph ;
Haszpra, Laszlo ;
Hermansen, Ove ;
Manca, Giovanni ;
Moncrieff, John ;
Meinhardt, Frank ;
Necki, Jaroslaw ;
Galkowski, Michal ;
O'Doherty, Simon ;
Paramonova, Nina ;
Scheeren, Hubertus A. ;
Steinbacher, Martin ;
Dlugokencky, Ed .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (02) :901-920
[4]   Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: theory and application to atmospheric inversion and data assimilation [J].
Bousserez, N. ;
Henze, Daven K. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (711) :365-390
[5]   Tropospheric emission spectrometer: Retrieval method and error analysis [J].
Bowman, KW ;
Rodgers, CD ;
Kulawik, SS ;
Worden, J ;
Sarkissian, E ;
Osterman, G ;
Steck, T ;
Lou, M ;
Eldering, A ;
Shephard, M ;
Worden, H ;
Lampel, M ;
Clough, S ;
Brown, P ;
Rinsland, C ;
Gunson, M ;
Beer, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1297-1307
[6]  
Crippa M., 2019, JRC Science for Policy Report, DOI [10.2760/687800,JRC117610, DOI 10.2760/687800,JRC117610]
[7]  
Crisp D., 2018, CONSTELLATION ARCHIT, V1
[8]  
EIA, 2020, DRILL PROD REP
[9]   Global Carbon Budget 2020 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Hauck, Judith ;
Olsen, Are ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Sitch, Stephen ;
Le Quere, Corinne ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone ;
Aragao, Luiz E. O. C. ;
Arneth, Almut ;
Arora, Vivek ;
Bates, Nicholas R. ;
Becker, Meike ;
Benoit-Cattin, Alice ;
Bittig, Henry C. ;
Bopp, Laurent ;
Bultan, Selma ;
Chandra, Naveen ;
Chevallier, Frederic ;
Chini, Louise P. ;
Evans, Wiley ;
Florentie, Liesbeth ;
Forster, Piers M. ;
Gasser, Thomas ;
Gehlen, Marion ;
Gilfillan, Dennis ;
Gkritzalis, Thanos ;
Gregor, Luke ;
Gruber, Nicolas ;
Harris, Ian ;
Hartung, Kerstin ;
Haverd, Vanessa ;
Houghton, Richard A. ;
Ilyina, Tatiana ;
Jain, Atul K. ;
Joetzjer, Emilie ;
Kadono, Koji ;
Kato, Etsushi ;
Kitidis, Vassilis ;
Korsbakken, Jan Ivar ;
Landschutzer, Peter ;
Lefevre, Nathalie ;
Lenton, Andrew .
EARTH SYSTEM SCIENCE DATA, 2020, 12 (04) :3269-3340
[10]   Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network [J].
Ganesan, A. L. ;
Manning, A. J. ;
Grant, A. ;
Young, D. ;
Oram, D. E. ;
Sturges, W. T. ;
Moncrieff, J. B. ;
O'Doherty, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (11) :6393-6406