First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN

被引:23
作者
Wang, Shiyao [1 ,2 ]
An, Yurong [1 ]
Xie, Congwei [2 ,3 ]
Zhang, Heng [2 ]
Zeng, Qingfeng [2 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, Int Ctr Mat Discovery, Xian 710072, Shaanxi, Peoples R China
[3] Skolkovo Inst Sci & Technol, 3 Nobel St, Skolkovo 143025, Russia
关键词
First-principle; Dilute magnetic semiconductor; Transition-metal doping; Monolayer AlN; MAGNETIC-PROPERTIES; GRAPHENE; PHOSPHORENE; NANOSHEETS; DYNAMICS; SURFACE; MOS2;
D O I
10.1016/j.spmi.2018.08.009
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Two-dimensional (2D) magnetic materials with large spin polarization and high Curie temperature (T-c) are essential and indispensable for quantum computation, logic and memory operations, and spintronic devices at nanoscale. In this study, using the first-principles calculations based on the spin polarized density functional theory with the generalized gradient approximation (GGA) plus Hubbard-U corrections (GGA + U), we investigated the magnetic and electronic properties of 2D AlN sheets doped with different atoms of 3d transition metal (TM) elements. Our calculations demonstrate that these TM-doped 2D monolayer AlN sheets are magnetic semiconductors with integer magnetic moment. The magnetic moments of these doped systems originate mainly from the TM atoms, following the Hund's rule and crystal field theory. Furthermore, we find that the magnetic coupling in the Mn- and Ni-doped 2D AlN sheets is ferromagnetic, while the magnetic coupling in the other TM-doped 2D AlN sheets is anti-ferro-magnetic. For the ferromagnetic and semiconducting TM-doped monolayer AlN sheets, the calculated Curie temperatures are above 400 K, exceeding that (155 K) of the most-studied dilute magnetic GaMnAs material. Our studies suggest that the Mn- and Ni-doped 2D monolayer AlN sheets would show very promising applications in the spintronic device at nanoscale.
引用
收藏
页码:171 / 180
页数:10
相关论文
共 45 条
[31]   First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties [J].
Santos, E. J. G. ;
Ayuela, A. ;
Sanchez-Portal, D. .
NEW JOURNAL OF PHYSICS, 2010, 12
[32]   First-principles theory of dilute magnetic semiconductors [J].
Sato, K. ;
Bergqvist, L. ;
Kudrnovsky, J. ;
Dederichs, P. H. ;
Eriksson, O. ;
Turek, I. ;
Sanyal, B. ;
Bouzerar, G. ;
Katayama-Yoshida, H. ;
Dinh, V. A. ;
Fukushima, T. ;
Kizaki, H. ;
Zeller, R. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1633-1690
[33]   Atomically thin dilute magnetism in Co-doped phosphorene [J].
Seixas, L. ;
Carvalho, A. ;
Neto, A. H. Castro .
PHYSICAL REVIEW B, 2015, 91 (15)
[34]   Magnetic properties of transition metal doped AlN nanosheet: First-principle studies [J].
Shi, Changmin ;
Qin, Hongwei ;
Zhang, Yongjia ;
Hu, Jifan ;
Ju, Lin .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (05)
[35]   Half-metallic graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
NATURE, 2006, 444 (7117) :347-349
[36]  
Wang F., 2016, Adv. Funct. Mater, V27
[37]   Doping Monolayer Graphene with Single Atom Substitutions [J].
Wang, Hongtao ;
Wang, Qingxiao ;
Cheng, Yingchun ;
Li, Kun ;
Yao, Yingbang ;
Zhang, Qiang ;
Dong, Cezhou ;
Wang, Peng ;
Schwingenschloegl, Udo ;
Yang, Wei ;
Zhang, X. X. .
NANO LETTERS, 2012, 12 (01) :141-144
[38]   Room-temperature ferromagnetism in alkaline-earth-metal doped AlP: First-principle calculations [J].
Wang, Shiyao ;
Fan, Xiaoli ;
An, Yurong .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 142 :338-345
[39]   Transition Metal-Doped Tin Monoxide Monolayer: A First-Principles Study [J].
Wang, Y. R. ;
Li, S. ;
Yi, J. B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (08) :4651-4661
[40]   Magnetic and microstructural properties of sputter deposited Cr-doped aluminum nitride thin films on silicon substrates [J].
Wistrela, E. ;
Bittner, A. ;
Schneider, M. ;
Reissner, M. ;
Schmid, U. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)