SLiM-Enrich: computational assessment of protein-protein interaction data as a source of domain-motif interactions

被引:13
作者
Idrees, Sobia [1 ]
Perez-Bercoff, Asa [1 ]
Edwards, Richard J. [1 ]
机构
[1] Univ New South Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW, Australia
关键词
Protein-protein interactions; Domain-motif interactions; Protein disorder; Short linear motifs; Yeast two-hybrid; Shiny app; SHORT LINEAR MOTIFS; WEB SERVER; PREDICTION; EVOLUTION; MODULES;
D O I
10.7717/peerj.5858
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many important cellular processes involve protein-protein interactions (PPIs) mediated by a Short Linear Motif (SLiM) in one protein interacting with a globular domain in another. Despite their significance, these domain-motif interactions (DMIs) are typically low affinity, which makes them challenging to identify by classical experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and yeast two-hybrid (Y2H). DMIs are generally under-represented in PPI networks as a result. A number of computational methods now exist to predict SLiMs and/or DMIs from experimental interaction data but it is yet to be established how effective different PPI detection methods are for capturing these low affinity SUM-mediated interactions. Here, we introduce a new computational pipeline (SUM-Enrich) to assess how well a given source of PPI data captures DMIs and thus, by inference, how useful that data should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of interacting proteins in which the first protein is known or predicted to interact with the second protein via a DMI. Permutation tests compare the number of known/predicted DMIs to the expected distribution if the two sets of proteins are randomly associated. This provides an estimate of DMI enrichment within the data and the false positive rate for individual DMIs. As a case study, we detect significant DMI enrichment in a high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a source of DMIs and highlights the high false positive rates associated with naive DMI prediction. SLiM-Enrich is available as an R Shiny app.
引用
收藏
页数:16
相关论文
共 29 条
[1]   UniProt: the universal protein knowledgebase [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Cowley, Andrew ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Castro, Leyla Garcia ;
Figueira, Luis ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzalez, Daniel ;
Hatton-Ellis, Emma ;
Li, Weizhong ;
Liu, Wudong ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Nightingale, Andrew ;
Palka, Barbara ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Volynkin, Vladimir ;
Wardell, Tony ;
Warner, Kate ;
Watkins, Xavier ;
Zaru, Rossana ;
Zellner, Hermann ;
Xenarios, Ioannis .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D158-D169
[2]   Domains, motifs, and scaffolds:: The role of modular interactions in the evolution and wiring of cell signaling circuits [J].
Bhattacharyya, Roby P. ;
Remenyi, Attila ;
Yeh, Brian J. ;
Lim, Wendell A. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :655-680
[3]   Attributes of short linear motifs [J].
Davey, Norman E. ;
Van Roey, Kim ;
Weatheritt, Robert J. ;
Toedt, Grischa ;
Uyar, Bora ;
Altenberg, Brigitte ;
Budd, Aidan ;
Diella, Francesca ;
Dinkel, Holger ;
Gibson, Toby J. .
MOLECULAR BIOSYSTEMS, 2012, 8 (01) :268-281
[4]   ELM 2016-data update and new functionality of the eukaryotic linear motif resource [J].
Dinkel, Holger ;
Van Roey, Kim ;
Michael, Sushama ;
Kumar, Manjeet ;
Uyar, Bora ;
Altenberg, Brigitte ;
Milchevskaya, Vladislava ;
Schneider, Melanie ;
Kuehn, Helen ;
Behrendt, Annika ;
Dahl, Sophie Luise ;
Damerell, Victoria ;
Diebel, Sandra ;
Kalman, Sara ;
Klein, Steffen ;
Knudsen, Arne C. ;
Maeder, Christina ;
Merrill, Sabina ;
Staudt, Angelina ;
Thiel, Vera ;
Welti, Lukas ;
Davey, Norman E. ;
Diella, Francesca ;
Gibson, Toby J. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D294-D300
[5]   IUPred:: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content [J].
Dosztányi, Z ;
Csizmok, V ;
Tompa, P ;
Simon, I .
BIOINFORMATICS, 2005, 21 (16) :3433-3434
[6]   SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins [J].
Edwards, Richard J. ;
Davey, Norman E. ;
Shields, Denis C. .
PLOS ONE, 2007, 2 (10)
[7]  
Edwards RJ, 2015, METHODS MOL BIOL, V1268, P89, DOI 10.1007/978-1-4939-2285-7_6
[8]   Interactome-wide prediction of short, disordered protein interaction motifs in humans [J].
Edwards, Richard J. ;
Davey, Norman E. ;
O'Brien, Kevin ;
Shields, Denis C. .
MOLECULAR BIOSYSTEMS, 2012, 8 (01) :282-295
[9]   ADAN: a database for prediction of protein-protein interaction of modular domains mediated by linear motifs [J].
Encinar, J. A. ;
Fernandez-Ballester, G. ;
Sanchez, I. E. ;
Hurtado-Gomez, E. ;
Stricher, F. ;
Beltrao, P. ;
Serrano, L. .
BIOINFORMATICS, 2009, 25 (18) :2418-2424
[10]   The Pfam protein families database: towards a more sustainable future [J].
Finn, Robert D. ;
Coggill, Penelope ;
Eberhardt, Ruth Y. ;
Eddy, Sean R. ;
Mistry, Jaina ;
Mitchell, Alex L. ;
Potter, Simon C. ;
Punta, Marco ;
Qureshi, Matloob ;
Sangrador-Vegas, Amaia ;
Salazar, Gustavo A. ;
Tate, John ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D279-D285