Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating

被引:177
|
作者
Qi, Kezhen [1 ,2 ]
Lv, Wenxiu [1 ]
Khan, Iltaf [3 ]
Liu, Shu-yuan [4 ,5 ]
机构
[1] Shenyang Normal Univ, Coll Chem & Chem Engn, Inst Catalysis Energy & Environm, Shenyang 110034, Liaoning, Peoples R China
[2] Fuzhou Univ, Coll Chem, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China
[3] Heilongjiang Univ, Sch Chem Chem Engn & Mat, Minist Educ, Key Lab Funct Inorgan Mat Chem, Harbin 158308, Heilongjiang, Peoples R China
[4] Shenyang Med Coll, Dept Pharmacol, Shenyang 110034, Liaoning, Peoples R China
[5] Harbin Normal Univ, Coll Phys & Elect Engn, Key Lab Photon & Elect Bandgap Mat, Minist Educ, Harbin 150025, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; CoP quantum dots; Electroless plating; H-2; generation; g-C3N4; CARBON NITRIDE NANOSHEETS; Z-SCHEME PHOTOCATALYST; HYDROGEN-PRODUCTION; NICKEL PHOSPHIDE; G-C3N4; NANOSHEETS; DECORATED G-C3N4; COCATALYST; PERFORMANCE; FABRICATION; EVOLUTION;
D O I
10.1016/S1872-2067(19)63459-5
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Photocatalytic water splitting is a promising method for hydrogen production. Numerous efficient photocatalysts have been synthesized and utilized. However, photocatalysts without a noble metal as the co-catalyst have been rarely reported. Herein, a CoP co-catalyst-modified graphitic-C3N4 (g-C3N4/CoP) is investigated for photocatalytic water splitting to produce H-2. The g-C3N4/CoP composite is synthesized in two steps. The first step is related to thermal decomposition, and the second step involves an electroless plating technique. The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots (QDs). Among the as-synthesized samples, the optimized one (g-C3N4/CoP-4%) shows exceptional photocatalytic activity as compared with pristine g-C3N4, generating H-2 at a rate of 936 mu mol g(-1) h(-1)even higher than that of g-C3N4 with 4 wt% Pt (665 mu mol g(-1) h(-1)). The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm, but after being composited with CoP, g-C3N4/CoP-4% has an absorption edge at 497 nm. Furthermore, photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C(3)N(4 )not only enhances the charge separation, but also improves the transfer of photogenerated e(-)h(+) pairs, thus improving the photocatalytic performance of the catalyst to generate H-2. This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [21] Amorphous Carbon and Cyano-Group Self-Modified P-Doped g-C3N4 for Boosting Photocatalytic H2 Evolution
    Gao, Hang
    Zhang, Minghao
    Li, Huixin
    Zhang, Yiran
    Song, Caixia
    Wang, Debao
    CATALYSTS, 2024, 14 (08)
  • [22] Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4
    Speltini, Andrea
    Scalabrini, Andrea
    Maraschi, Federica
    Sturini, Michela
    Pisanu, Ambra
    Malavasi, Lorenzo
    Profumo, Antonella
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) : 14925 - 14933
  • [23] CoO/g-C3N4 p-n heterojunction catalyst in-situ loading CoP for enhanced photocatalytic H2 evolution
    Li, Yang
    Li, Yue
    Yang, Cai
    Yu, Chang-Ping
    Gan, Li-Hua
    APPLIED SURFACE SCIENCE, 2023, 639
  • [24] Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production
    Mei, Feifei
    Li, Zhen
    Dai, Kai
    Zhang, Jinfeng
    Liang, Changhao
    CHINESE JOURNAL OF CATALYSIS, 2020, 41 (01) : 41 - 49
  • [25] Large impact of heating time on physical properties and photocatalytic H2 production of g-C3N4 nanosheets synthesized through urea polymerization in Ar atmosphere
    Yuan, Yu-Peng
    Xu, Wen-Tao
    Yin, Li-Sha
    Cao, Shao-Wen
    Liao, Yu-Sen
    Tng, Yi-Qian
    Xue, Can
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (30) : 13159 - 13163
  • [26] Photodegradation of Organic Pollutants Coupled with Simultaneous Photocatalytic Evolution of Hydrogen Using Quantum-Dot-Modified g-C3N4 Catalysts under Visible-Light Irradiation
    Jiang, Xun-Heng
    Wang, Lai-Chun
    Yu, Fan
    Nie, Yu-Chun
    Xing, Qiu-Ju
    Liu, Xia
    Pei, Yong
    Zou, Jian-Ping
    Dai, Wei-Li
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (10): : 12695 - 12705
  • [27] Phase Effect of NixPy Hybridized with g-C3N4 for Photocatalytic Hydrogen Generation
    Sun, Zhichao
    Zhu, Mingshan
    Fujitsuka, Mamoru
    Wang, Anjie
    Shi, Chuan
    Majima, Tetsuro
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (36) : 30583 - 30590
  • [28] Unprecedented effect of CO2 calcination atmosphere on photocatalytic H2 production activity from water using g-C3N4 synthesized from triazole polymerization
    Xu, Jing
    Fujitsuka, Mamoru
    Kim, Sooyeon
    Wang, Zhouping
    Majima, Tetsuro
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 : 141 - 148
  • [29] In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation
    Chen, Pengfei
    Xing, Pingxing
    Chen, Zhiqiang
    Hu, Xin
    Lin, Hongjun
    Zhao, Leihong
    He, Yiming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 163 - 171
  • [30] Visible light activated photocatalytic behaviour of Eu (III) modified g-C3N4 for CO2 reduction and H2 evolution
    Tang, Jun-ying
    Guo, Rui-tang
    Pan, Wei-guo
    Zhou, Wei-guo
    Huang, Chun-ying
    APPLIED SURFACE SCIENCE, 2019, 467 : 206 - 212