CLASSIFICATION OF STEADY GRADIENT RICCI SOLITONS ON TWO-MANIFOLDS

被引:3
|
作者
Bercu, Gabriel [1 ]
Postolache, Mihai [2 ]
机构
[1] Univ Dunarea de Jos, Dept Math, Galati 800008, Romania
[2] Univ Politehn Bucuresti, Fac Sci Appl, Bucharest 060042, Romania
关键词
Riemannian manifold; curvature; gradient Ricci soliton; completeness;
D O I
10.1142/S0219887812500491
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In our very recent published work [Int. J. Geom. Meth. Mod. Phys. 8(4) (2011) 783-796], we considered the Riemannian manifold M = R-2 endowed with the warped metric (g) over bar (x, y) = diag(g(y), 1), where g is a positive function, of C-infinity-class, depending on the variable y only. Within this framework, we found a wide class of 2D gradient Ricci solitons and specialized our results to discuss some case studies. This research is a natural continuation, providing classification results for the subclass of steady gradient Ricci solitons.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Gradient Ricci Solitons on Multiply Warped Product Manifolds
    Karaca, Fatma
    Ozgur, Cihan
    FILOMAT, 2018, 32 (12) : 4221 - 4228
  • [22] *-RICCI SOLITONS AND *-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS
    Dey, Dibakar
    Majhi, Pradip
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 625 - 637
  • [23] Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds
    Turana, Mine
    De, Uday Chand
    Yildiz, Ahmet
    FILOMAT, 2012, 26 (02) : 363 - 370
  • [24] Classification of gradient shrinking Ricci solitons with bounded Ricci curvature
    Yang, Fei
    Wang, Zijun
    Zhang, Liangdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 71
  • [25] ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2377 - 2391
  • [26] Bach-flat gradient steady Ricci solitons
    Huai-Dong Cao
    Giovanni Catino
    Qiang Chen
    Carlo Mantegazza
    Lorenzo Mazzieri
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 125 - 138
  • [27] Bach-flat gradient steady Ricci solitons
    Cao, Huai-Dong
    Catino, Giovanni
    Chen, Qiang
    Mantegazza, Carlo
    Mazzieri, Lorenzo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 125 - 138
  • [28] Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds
    De, Uday Chand
    Turan, Mine
    Yildiz, Ahmet
    De, Avik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 127 - 142
  • [29] Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds
    Sardar, Arpan
    Sarkar, Avijit
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 813 - 822
  • [30] A NOTE ON *-CONFORMAL AND GRADIENT *-CONFORMAL η-RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    Chaubey, Sudhakar K.
    Vanli, Aysel Turgut
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (02): : 231 - 243