Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes

被引:178
作者
Farhadi, Sajjad [1 ]
Aminzadeh, Behnoush [1 ]
Torabian, Ali [1 ]
Khatibikamal, Vahid [1 ]
Fard, Mohammad Alizadeh [1 ]
机构
[1] Univ Tehran, Grad Fac Environm, Dept Civil & Environm Engn, Tehran 14174, Iran
关键词
Electrocoagulation; Photoelectrocoagulation; Peroxi-electrocoagulation; Peroxi-photoelectrocoagulation; COD removal; ELECTRO-FENTON; ANODIC-OXIDATION; DEGRADATION; COAGULATION; INDUSTRIAL; HERBICIDES; ELECTROFLOTATION; MINERALIZATION; WASTEWATERS; POLLUTANTS;
D O I
10.1016/j.jhazmat.2012.03.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation > electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 45 条
[1]   Fenton's peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater [J].
Badawy, M. I. ;
Ali, M. E. M. .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 136 (03) :961-966
[2]   Application of Fenton oxidation to cosmetic wastewaters treatment [J].
Bautista, P. ;
Mohedano, A. F. ;
Gilarranz, M. A. ;
Casas, J. A. ;
Rodriguez, J. J. .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 143 (1-2) :128-134
[3]  
Bigda RJ, 1995, CHEM ENG PROG, V91, P62
[4]   Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode [J].
Boye, B ;
Brillas, E ;
Marselli, B ;
Michaud, PA ;
Comninellis, C ;
Farnia, G ;
Sandonà, G .
ELECTROCHIMICA ACTA, 2006, 51 (14) :2872-2880
[5]   Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J].
Brillas, Enric ;
Sires, Ignasi ;
Oturan, Mehmet A. .
CHEMICAL REVIEWS, 2009, 109 (12) :6570-6631
[6]   Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes [J].
Can, OT ;
Bayramoglu, M ;
Kobya, M .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (14) :3391-3396
[7]   Electrochemical treatment of 2,4-dinitrophenol aqueous wastes using boron-doped diamond anodes [J].
Cañizares, P ;
Sáez, C ;
Lobato, J ;
Rodrigo, MA .
ELECTROCHIMICA ACTA, 2004, 49 (26) :4641-4650
[8]   Study of the electrocoagulation process using aluminum and iron electrodes [J].
Canizares, Pablo ;
Jimenez, Carlos ;
Martinez, Fabiola ;
Saez, Cristina ;
Rodrigo, Manuel A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (19) :6189-6195
[9]   Electrochemical technologies in wastewater treatment [J].
Chen, GH .
SEPARATION AND PURIFICATION TECHNOLOGY, 2004, 38 (01) :11-41
[10]   Separation of pollutants from restaurant wastewater by electrocoagulation [J].
Chen, XM ;
Chen, GH ;
Yue, PL .
SEPARATION AND PURIFICATION TECHNOLOGY, 2000, 19 (1-2) :65-76