Nanoimprint for future non-volatile memory and logic devices

被引:24
|
作者
Meier, M. [1 ]
Nauenheim, C. [1 ]
Gilles, S. [2 ]
Mayer, D. [2 ]
Kuegeler, C. [1 ]
Waser, R. [1 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Bio & Nanosyst, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Werkstoffe Elektrotech, D-52074 Aachen, Germany
关键词
nanoimprint lithography; crossbar array; memory and logic devices;
D O I
10.1016/j.mee.2008.01.101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoimprint lithography (NIL) is used to realize next generation memory and logic devices. The simple device structure consists of a resistance switching material sandwiched between two metal nanoelectrodes. Bottom and top electrodes are aligned perpendicular to each other building a crossbar array structure. A significant advantage of these future devices in addition to its simplicity is the high integration density. Crossbar arrays with 200 nm electrodes and single cross junctions with 30 nm electrodes were achieved using UV NIL. The bottom electrodes were embedded and planarized by spin on glass, such that an even surface for the realization of the top electrodes by UV NIL could be obtained. Finally electrical measurements demonstrated the function of the fabricated devices. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:870 / 872
页数:3
相关论文
共 50 条
  • [1] Ferroelectric non-volatile logic devices
    Fujimori, Y
    Nakamura, T
    Takasu, H
    Kimura, H
    Hanyu, T
    Kameyama, M
    INTEGRATED FERROELECTRICS, 2003, 56 : 1003 - 1012
  • [2] Ferroelectric non-volatile logic devices
    Takasu, H
    Fujimori, Y
    Nakamura, T
    Kimura, H
    Hanyu, T
    Kameyama, M
    INTEGRATED FERROELECTRICS, 2004, 61 : 83 - 88
  • [3] Nanocrystal non-volatile memory devices
    Horvath, Zs. J.
    Basa, P.
    THIN FILMS AND POROUS MATERIALS, 2009, 609 : 1 - 9
  • [4] A nanowire transistor for high performance logic and terabit non-volatile memory devices
    Lee, Hyunjin
    Ryu, Seong-Wan
    Han, Jin-Woo
    Yu, Lee-Eun
    Im, Maesoon
    Kim, Chungjin
    Kim, Sungho
    Lee, Eujune
    Kim, Kuk-Hwan
    Kim, Ju-Hyun
    Bae, Dong-Il
    Jeon, Sang Cheol
    Kim, Kwang Hee
    Lee, Gi Sung
    Oh, Joe Sub
    Park, Yun Chang
    Bae, Woo Ho
    Yoo, Jung Jae
    Yang, Jun Mo
    Lee, Hee Mok
    Choi, Yang-Kyu
    2007 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2007, : 144 - +
  • [5] Scalable Logic Gate Non-Volatile Memory
    Wang, Lee
    Hsu, Shi-Ming
    2014 14TH ANNUAL NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM (NVMTS), 2014,
  • [6] Bioorganic nanodots for non-volatile memory devices
    Amdursky, Nadav
    Shalev, Gil
    Handelman, Amir
    Litsyn, Simon
    Natan, Amir
    Roizin, Yakov
    Rosenwaks, Yossi
    Szwarcman, Daniel
    Rosenman, Gil
    APL MATERIALS, 2013, 1 (06):
  • [7] Graphene Based Non-Volatile Memory Devices
    Wang, Xiaomu
    Xie, Weiguang
    Xu, Jian-Bin
    ADVANCED MATERIALS, 2014, 26 (31) : 5496 - 5503
  • [8] Non-volatile memory technology: A view of the future
    Lai, S
    2004 NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM, PROCEEDINGS, 2004, : 129 - 129
  • [9] Future directions of non-volatile memory technologies
    Fazio, A
    MATERIALS AND PROCESSES FOR NONVOLATILE MEMORIES, 2005, 830 : 3 - 11
  • [10] Making Non-Volatile Nanomagnet Logic Non-Volatile
    Dingler, Aaron
    Kurtz, Steve
    Niemier, Michael
    Hu, Xiaobo Sharon
    Csaba, Gyorgy
    Nahas, Joseph
    Porod, Wolfgang
    Bernstein, Gary
    Li, Peng
    Sankar, Vjiay Karthik
    2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2012, : 476 - 485