Nanoimprint for future non-volatile memory and logic devices

被引:24
作者
Meier, M. [1 ]
Nauenheim, C. [1 ]
Gilles, S. [2 ]
Mayer, D. [2 ]
Kuegeler, C. [1 ]
Waser, R. [1 ,3 ]
机构
[1] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Bio & Nanosyst, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Werkstoffe Elektrotech, D-52074 Aachen, Germany
关键词
nanoimprint lithography; crossbar array; memory and logic devices;
D O I
10.1016/j.mee.2008.01.101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoimprint lithography (NIL) is used to realize next generation memory and logic devices. The simple device structure consists of a resistance switching material sandwiched between two metal nanoelectrodes. Bottom and top electrodes are aligned perpendicular to each other building a crossbar array structure. A significant advantage of these future devices in addition to its simplicity is the high integration density. Crossbar arrays with 200 nm electrodes and single cross junctions with 30 nm electrodes were achieved using UV NIL. The bottom electrodes were embedded and planarized by spin on glass, such that an even surface for the realization of the top electrodes by UV NIL could be obtained. Finally electrical measurements demonstrated the function of the fabricated devices. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:870 / 872
页数:3
相关论文
共 8 条
[1]   Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography [J].
Austin, MD ;
Ge, HX ;
Wu, W ;
Li, MT ;
Yu, ZN ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5299-5301
[2]   6 nm half-pitch lines and 0.04 μm2 static random access memory patterns by nanoimprint lithography [J].
Austin, MD ;
Zhang, W ;
Ge, HX ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
NANOTECHNOLOGY, 2005, 16 (08) :1058-1061
[3]   Nanoimprint lithography [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06) :4129-4133
[4]   Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field [J].
Gao, He ;
Tan, Hua ;
Zhang, Wei ;
Morton, Keith ;
Chou, Stephen Y. .
NANO LETTERS, 2006, 6 (11) :2438-2441
[5]   A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre [J].
Green, Jonathan E. ;
Choi, Jang Wook ;
Boukai, Akram ;
Bunimovich, Yuri ;
Johnston-Halperin, Ezekiel ;
DeIonno, Erica ;
Luo, Yi ;
Sheriff, Bonnie A. ;
Xu, Ke ;
Shin, Young Shik ;
Tseng, Hsian-Rong ;
Stoddart, J. Fraser ;
Heath, James R. .
NATURE, 2007, 445 (7126) :414-417
[6]   Fabrication of a 34 x 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography [J].
Jung, GY ;
Ganapathiappan, S ;
Ohlberg, DAA ;
Olynick, DL ;
Chen, Y ;
Tong, WM ;
Williams, RS .
NANO LETTERS, 2004, 4 (07) :1225-1229
[7]   Circuit fabrication at 17 nm half-pitch by nanoimprint lithography [J].
Jung, GY ;
Johnston-Halperin, E ;
Wu, W ;
Yu, ZN ;
Wang, SY ;
Tong, WM ;
Li, ZY ;
Green, JE ;
Sheriff, BA ;
Boukai, A ;
Bunimovich, Y ;
Heath, JR ;
Williams, RS .
NANO LETTERS, 2006, 6 (03) :351-354
[8]   One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography [J].
Wu, W ;
Jung, GY ;
Olynick, DL ;
Straznicky, J ;
Li, Z ;
Li, X ;
Ohlberg, DAA ;
Chen, Y ;
Wang, SY ;
Liddle, JA ;
Tong, WM ;
Williams, RS .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1173-1178