Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling

被引:171
作者
Moretti, Fabio [1 ,2 ]
Pizzuti, Stefano [1 ,2 ]
Panzieri, Stefano [2 ]
Annunziato, Mauro [1 ]
机构
[1] ENEA, Kista, Sweden
[2] Univ Roma Tre, Comp Sci & Automat Dept, Rome, Italy
关键词
Traffic flow forecasting; Ensembling; Bagging; Neural networks; PREDICTION;
D O I
10.1016/j.neucom.2014.08.100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we show a hybrid modeling approach which combines Artificial Neural Networks and a simple statistical approach in order to provide a one hour forecast of urban traffic flow rates. Experimentation has been carried out on three different classes of real streets and results show that the proposed approach outperforms the best of the methods it puts together. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 7
页数:5
相关论文
共 22 条
[1]  
[Anonymous], TRANSPORT RES REC
[2]  
[Anonymous], NEURAL NETWORKS PATT
[3]  
Arbib MA, 1995, NANDBOOK BRAIN THEOR
[4]   Soft computing applications in traffic and transport systems: A review [J].
Avineri, E .
SOFT COMPUTING: METHODOLOGIES AND APPLICATIONS, 2005, :17-25
[5]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[6]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[7]  
Bucur L., 2011, 18 MED C MARR, P1092
[8]  
Canca D., 1997, JOINT INT M BARC
[9]   A NEURAL NETWORK BASED TRAFFIC-FLOW PREDICTION MODEL [J].
Cetiner, B. Gueltekin ;
Sari, Murat ;
Borat, Oguz .
MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (02) :269-278
[10]  
Dougherty M.S., 1994, P 2 DRIVE 2 WORKSH S, P65