State Estimation for Flag Hidden Markov Models with Imperfect Sensors

被引:0
|
作者
Doty, Kyle [1 ]
Roy, Sandip [1 ]
Fischer, Thomas R. [1 ]
机构
[1] Washington State Univ, Pullman, WA 99164 USA
来源
2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS) | 2016年
关键词
Hidden Markov Models; Smart Homes; Maximum Likelihood; PROBABILITY; BOUNDS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State detection is studied for a special class of flag Hidden Markov Models (HMMs), which comprise 1) an arbitrary finite-state underlying Markov chain and 2) a structured observation process wherein a subset of states emit distinct flags with some probability while other states are unmeasured. The focus of this article is to develop an explicit computation of the probability of error for the maximum-likelihood filter, specifically for the case that the sensors are imperfect. The algebraic result is leveraged to address sensor placement in a couple of examples, including one on activity-monitoring in a home environment that is drawn from field data.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] STATE DURATION MODELING IN HIDDEN MARKOV-MODELS
    VASEGHI, SV
    SIGNAL PROCESSING, 1995, 41 (01) : 31 - 41
  • [22] Spectral M-estimation with Applications to Hidden Markov Models
    Tran, Dustin
    Kim, Minjae
    Doshi-Velez, Finale
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1421 - 1430
  • [23] An MCMC sampling approach to estimation of nonstationary hidden Markov models
    Djuric, PM
    Chun, JH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (05) : 1113 - 1123
  • [24] Context Tree Estimation in Variable Length Hidden Markov Models
    Dumont, Thierry
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (06) : 3196 - 3208
  • [25] Bayesian Monte Carlo estimation for profile hidden Markov models
    Lewis, Steven J.
    Raval, Alpan
    Angus, John E.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1198 - 1216
  • [26] Parametric estimation of hidden Markov models by least squares type estimation and deconvolution
    Chesneau, Christophe
    El Kolei, Salima
    Navarro, Fabien
    STATISTICAL PAPERS, 2022, 63 (05) : 1615 - 1648
  • [27] Parametric estimation of hidden Markov models by least squares type estimation and deconvolution
    Christophe Chesneau
    Salima El Kolei
    Fabien Navarro
    Statistical Papers, 2022, 63 : 1615 - 1648
  • [28] A LOW-MEMORY APPROACH FOR BEST-STATE ESTIMATION OF HIDDEN MARKOV MODELS WITH MODEL ERROR
    Anitescu, Mihai
    Zeng, Xiaoyan
    Constantinescu, Emil M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 468 - 495
  • [29] Learning hidden Markov models for linear Gaussian systems with applications to event-based state estimation
    Zheng, Kaikai
    Shi, Dawei
    Shi, Ling
    AUTOMATICA, 2021, 128
  • [30] Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models
    Shappell, Heather
    Caffo, Brian S.
    Pekar, James J.
    Lindquist, Martin A.
    NEUROIMAGE, 2019, 191 : 243 - 257