State Estimation for Flag Hidden Markov Models with Imperfect Sensors

被引:0
|
作者
Doty, Kyle [1 ]
Roy, Sandip [1 ]
Fischer, Thomas R. [1 ]
机构
[1] Washington State Univ, Pullman, WA 99164 USA
来源
2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS) | 2016年
关键词
Hidden Markov Models; Smart Homes; Maximum Likelihood; PROBABILITY; BOUNDS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State detection is studied for a special class of flag Hidden Markov Models (HMMs), which comprise 1) an arbitrary finite-state underlying Markov chain and 2) a structured observation process wherein a subset of states emit distinct flags with some probability while other states are unmeasured. The focus of this article is to develop an explicit computation of the probability of error for the maximum-likelihood filter, specifically for the case that the sensors are imperfect. The algebraic result is leveraged to address sensor placement in a couple of examples, including one on activity-monitoring in a home environment that is drawn from field data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Explicit State-Estimation Error Calculations for Flag Hidden Markov Models
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (17) : 4444 - 4454
  • [2] Filtering and Smoothing State Estimation for Flag Hidden Markov Models
    Doty, Kyle
    Roy, Sandip
    Fischer, Thomas R.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 7042 - 7047
  • [3] AN ASYMPTOTIC ANALYSIS OF BAYESIAN STATE ESTIMATION IN HIDDEN MARKOV MODELS
    Yamazaki, Keisuke
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [4] Explicit-duration Hidden Markov Models for quantum state estimation
    Luati, Alessandra
    Novelli, Marco
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 158
  • [5] Online estimation of hidden Markov models
    Stiller, JC
    Radons, G
    IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (08) : 213 - 215
  • [6] Distributed state estimation for hidden Markov models by sensor networks with dynamic quantization
    Huang, M
    Dey, S
    PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2004, : 355 - 360
  • [7] S-estimation of hidden Markov models
    Farcomeni, Alessio
    Greco, Luca
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 57 - 80
  • [8] Shrinkage Estimation for Multivariate Hidden Markov Models
    Fiecas, Mark
    Franke, Juergen
    von Sachs, Rainer
    Kamgaing, Joseph Tadjuidje
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 424 - 435
  • [9] Maximum spacing estimation for hidden Markov models
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2025, 28 (1)
  • [10] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425