High-resistivity GaN buffer templates and their optimization for GaN-based HFETs

被引:55
作者
Hubbard, SM
Zhao, G
Pavlidis, D
Sutton, W
Cho, E
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] Tech Univ Darmstadt, Dept High Frequency Elect, D-64283 Darmstadt, Germany
关键词
in situ laser reflectometry; metalorganic chemical vapor deposition; nitrides; semi-insulating GaN;
D O I
10.1016/j.jcrysgro.2005.06.022
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
High-resistance (HR) GaN templates for AlGaN/GaN heterojunction field effect transistor (HFET) applications were grown using organometallic vapor phase epitaxy. The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature and NL thickness. Using an annealing temperature of 1033 degrees C and NL thickness of 26nm, GaN with sheet resistance of 10(10)Omega/sq was achieved, comparable to that of Fe-cloped GaN. Material characterization results show that the high-resistance GaN is achieved due to compensating acceptor levels that may be introduced through edge-type threading dislocations. Optimization of annealing temperature and NIL thickness provided a means to maximize GaN sheet resistance without significantly degrading material quality. In situ laser reflectance was used to correlate the NL properties to sheet resistance and material quality, providing a figure of merit for expected sheet resistance. AlGaN/GaN HFET layers grown using FIR GaN templates with R-s of 10(10)Omega/sq gave surface and interface roughness of 14 and 7 (A) over circle, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using FIR GaN templates was comparable to similar layers grown using unintentionally doped (UTD) GaN templates. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 21 条
[1]   Engineering of an insulating buffer and use of AlN interlayers: two optimisations for AlGaN-GaNHEMT-like structures [J].
Bougrioua, Z ;
Moerman, I ;
Nistor, L ;
Van Daele, B ;
Monroy, E ;
Palacios, T ;
Calle, F ;
Leroux, M .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 195 (01) :93-100
[2]   Material optimisation for AlGaN/GaN HFET applications [J].
Bougrioua, Z ;
Moerman, I ;
Sharma, N ;
Wallis, RH ;
Cheyns, J ;
Jacobs, K ;
Thrush, EJ ;
Considine, L ;
Beanland, R ;
Farvacque, JL ;
Humphreys, C .
JOURNAL OF CRYSTAL GROWTH, 2001, 230 (3-4) :573-578
[3]   Effects of reactor pressure on GaN nucleation layers and subsequent GaN epilayers grown on sapphire substrate [J].
Chen, J ;
Zhang, SM ;
Zhang, BS ;
Zhu, JJ ;
Feng, G ;
Shen, XM ;
Wang, YT ;
Yang, H ;
Zheng, WC .
JOURNAL OF CRYSTAL GROWTH, 2003, 254 (3-4) :348-352
[4]   Growth and in situ monitoring of GaN using IR interference effects [J].
Considine, L ;
Thrush, EJ ;
Crawley, JA ;
Jacobs, K ;
Van der Stricht, W ;
Moerman, I ;
Demeester, P ;
Park, GH ;
Hwang, SJ ;
Song, JJ .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :192-198
[5]   In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers [J].
Figge, S ;
Böttcher, T ;
Einfeldt, S ;
Hommel, D .
JOURNAL OF CRYSTAL GROWTH, 2000, 221 :262-266
[6]   Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition [J].
Heikman, S ;
Keller, S ;
DenBaars, SP ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 2002, 81 (03) :439-441
[7]   X-ray diffraction analysis of the defect structure in epitaxial GaN [J].
Heinke, H ;
Kirchner, V ;
Einfeldt, S ;
Hommel, D .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2145-2147
[8]  
Heying B, 1996, APPL PHYS LETT, V68, P643, DOI 10.1063/1.116495
[9]   In situ measurements of GaN nucleation layer decompostion [J].
Koleske, DD ;
Coltrin, ME ;
Allerman, AA ;
Cross, KC ;
Mitchell, CC ;
Figiel, JJ .
APPLIED PHYSICS LETTERS, 2003, 82 (08) :1170-1172
[10]   Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films [J].
Kornitzer, K ;
Ebner, T ;
Thonke, K ;
Sauer, R ;
Krichner, C ;
Schwegler, V ;
Kamp, M ;
Leszczynski, M ;
Grzegory, I ;
Porowski, S .
PHYSICAL REVIEW B, 1999, 60 (03) :1471-1473