共 42 条
Antimicrobial activity of plazomicin against Enterobacteriaceae-producing carbapenemases from 50 Brazilian medical centers
被引:30
作者:
Martins, Andreza Francisco
[1
]
Bail, Larissa
[3
]
Sanches Ito, Carmen Antonia
[3
]
Nogueira, Keite da Silva
[5
,6
]
Dalmolin, Tanise Vendruscolo
[2
]
Martins, Amanda Silva
[2
]
Lopes Rocha, Jaime Luis
[4
]
Serio, Alisa W.
[7
]
Tuon, Felipe Francisco
[4
,5
]
机构:
[1] Univ Fed Rio Grande do Sul, Div Microbiol, Porto Alegre, RS, Brazil
[2] LABRESIS, Bacterial Resistance Lab, Ponta Grossa, Brazil
[3] Univ Estadual Ponta Grossa, Div Microbiol, Ponta Grossa, Brazil
[4] Pontificia Univ Catolica Parana, Sch Med, Infect Dis, Curitiba, Parana, Brazil
[5] Univ Fed Parana, Hosp Clin, Curitiba, Parana, Brazil
[6] Univ Fed Parana, Basic Pathol Dept, Curitiba, Parana, Brazil
[7] Achaogen, San Francisco, CA USA
关键词:
Carbapenemase;
Aminoglycosides;
Enterobacteriaceae;
Gentamycin;
Amikacin;
IN-VITRO ACTIVITY;
RESISTANT ACINETOBACTER-BAUMANNII;
AMINOGLYCOSIDE-MODIFYING ENZYMES;
KLEBSIELLA-PNEUMONIAE;
BETA-LACTAMASE;
MOLECULAR EPIDEMIOLOGY;
POLYMYXIN-B;
INFECTIONS;
COLISTIN;
ACHN-490;
D O I:
10.1016/j.diagmicrobio.2017.11.004
中图分类号:
R51 [传染病];
学科分类号:
100401 ;
摘要:
Plazomicin is a next-generation aminoglycoside with activity against Enterobacteriaceae, including carbapenemase-producing Enterobacteriaceae (CPE). The aim of this study was to evaluate the activity of plazomicin against CPE (Klebsiella spp., Escherichia coli, Serratia spp., Enterobacter spp., Citrobacter spp., Morganella spp., Proteus spp., Providencia spp.) from different Brazilian hospitals. A total of 4000 carbapenemresistant Enterobacteriaceae isolates were collected from clinical samples in 50 Brazilian hospitals during 2013-2015. Of these, 499 carbapenem-resistant isolates (CLSI criteria) were selected for further evaluation via broth microdilution to assess for the activity of plazomicin, colistin, tigecycline, meropenem, amikacin, and gentamicin. Additionally, the isolates were assessed for the presence of carbapenemase genes (bla(KPC), bla(NDM), bla(OKA-48-like), bla(IMP), bla(EKC), bla(GES), and bla(VIM)) by polymerase chain reaction (PCR). When PCR was positive to bla(OXA-48-like), bla(IMP), bla(GES), and bla(VIM), the carbapenemase genes were sequenced. bla(KPC) was the most prevalent carbapenemase gene found (n = 397), followed by bla(NDM) (n = 81), bla(OXA-48) (n = 12), and bla(IMP-1) (n = 3). Other genes were identified in only 1 isolate each: bla(BKG-1), bla(GES-16), bla(GES-1), bla(OXA-370), and blav(VIM-1). One isolate had 2 carbapenemase genes (bla(KPC) and bia(NDM)). Thirty-three percent of the isolates were nonsusceptible to colistin, 24% to tigecycline, 97% to meropenem, 51% to amikacin, and 81% to gentamicin (via EUCAST criteria). The plazomicin MIC50/90 was 0.5/64 mg/L, with 85% of MICs <= 2 mg/L and 87% of MICs <= 4 mg/L Elevated MICs to plazomicin were not associated with a specific carbapenemase or bacterial species. The MICs of plazomicin against CPE were lower than those of other aminoglycosides. Plazomicin is a promising drug for the treatment of CPE infections. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:228 / 232
页数:5
相关论文