Efficient Pose Estimation using Random Forest and Hash Voting

被引:0
|
作者
Sun, Bin [1 ]
Zhang, Xinyu [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA) | 2019年
关键词
Pose estimation; Random forest; Point pair feature; Joint optimization; 3D; REGISTRATION; RECOGNITION; FEATURES;
D O I
10.1109/icma.2019.8816210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation is one of the key components in robot perception and exhibits a number of unique challenges. First, it is non-trial to directly search for potential poses in given images. Second, it is very challenging to retrieve pose features hidden in images or point clouds in the presence of textureless objects and occlusion. We present a pose estimation pipeline using RGBD images. We first use random forest to perform segmentation and locate the object of interest in a given RGBD image. Then we generate sufficient hypotheses and compute their possibility distribution using hash voting. Our results show high precision and good performance under severe conditions: textureless objects and occlusion.
引用
收藏
页码:1554 / 1559
页数:6
相关论文
共 50 条
  • [21] Automatic and Efficient Human Pose Estimation for Sign Language Videos
    Charles, James
    Pfister, Tomas
    Everingham, Mark
    Zisserman, Andrew
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (01) : 70 - 90
  • [22] Pose Estimation of 3D Objects Based on Point Pair Feature and Weighted Voting
    Lin, Sen
    Li, Wentao
    Wang, Yuning
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 383 - 394
  • [23] Efficient Image Classification Using Sparse Coding and Random Forest
    Tang, Feng
    Lu, Huan
    Sun, Tanfeng
    Jiang, Xinghao
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 781 - 785
  • [24] Efficient pose estimation of rotationally symmetric objects
    de Figueiredo, Rui Pimentel
    Moreno, Plinio
    Bernardino, Alexandre
    NEUROCOMPUTING, 2015, 150 : 126 - 135
  • [25] Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking
    Yan, Wu
    Xu, Zhihao
    Zhou, Xuefeng
    Su, Qianxin
    Li, Shuai
    Wu, Hongmin
    IEEE ACCESS, 2020, 8 (08): : 63055 - 63064
  • [26] Implicit Decouple Network for Efficient Pose Estimation
    Zhao, Lei
    Han, Le
    Yao, Min
    Zheng, Nenggan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2591 - 2599
  • [27] Estimation of Knee Movement from Surface EMG Using Random Forest with Principal Component Analysis
    Li, Zhong
    Guan, Xiaorong
    Zou, Kaifan
    Xu, Cheng
    ELECTRONICS, 2020, 9 (01)
  • [28] Road Network State Estimation using Random Forest Ensemble Learning
    Hou, Yi
    Edara, Praveen
    Chang, Yohan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [29] Confidence estimation for t-SNE embeddings using random forest
    Yigin, Busra Ozgode
    Saygili, Gorkem
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (12) : 3981 - 3992
  • [30] Pose Estimation of Landscape Images Using DEM and Orthophotos
    Produit, Timothee
    Tuia, Devis
    Golay, Francois
    Strecha, Christoph
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 209 - 214