Efficient Pose Estimation using Random Forest and Hash Voting

被引:0
|
作者
Sun, Bin [1 ]
Zhang, Xinyu [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA) | 2019年
关键词
Pose estimation; Random forest; Point pair feature; Joint optimization; 3D; REGISTRATION; RECOGNITION; FEATURES;
D O I
10.1109/icma.2019.8816210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation is one of the key components in robot perception and exhibits a number of unique challenges. First, it is non-trial to directly search for potential poses in given images. Second, it is very challenging to retrieve pose features hidden in images or point clouds in the presence of textureless objects and occlusion. We present a pose estimation pipeline using RGBD images. We first use random forest to perform segmentation and locate the object of interest in a given RGBD image. Then we generate sufficient hypotheses and compute their possibility distribution using hash voting. Our results show high precision and good performance under severe conditions: textureless objects and occlusion.
引用
收藏
页码:1554 / 1559
页数:6
相关论文
共 50 条
  • [1] Hand Pose Estimation in Depth Image using CNN and Random Forest
    Chen, Xi
    Cao, Zhiguo
    Xiao, Yang
    Fang, Zhiwen
    MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
  • [2] Head-Pose Estimation In-the-Wild Using a Random Forest
    Valle, Roberto
    Miguel Buenaposada, Jose
    Valdes, Antonio
    Baumela, Luis
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, 2016, 9756 : 24 - 33
  • [3] PERSON-INDEPENDENT HEAD POSE ESTIMATION BASED ON RANDOM FOREST REGRESSION
    Li, Yali
    Wang, Shengjin
    Ding, Xiaoqing
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1521 - 1524
  • [4] Multi⁃Instance Point Cloud Pose Estimation Method Based on Gaussian⁃ Weighted Voting Strategy
    Zhang, Ying
    Du, Hongzhi
    Hu, Yunbo
    Sun, Yanbiao
    Zhu, Jigui
    ACTA OPTICA SINICA, 2025, 45 (05)
  • [5] Fast Random-Forest-Based Human Pose Estimation Using a Multi-scale and Cascade Approach
    Chang, Ju Yong
    Nam, Seung Woo
    ETRI JOURNAL, 2013, 35 (06) : 949 - 959
  • [6] Efficient Center Voting for Object Detection and 6D Pose Estimation in 3D Point Cloud
    Guo, Jianwei
    Xing, Xuejun
    Quan, Weize
    Yan, Dong-Ming
    Gu, Qingyi
    Liu, Yang
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5072 - 5084
  • [7] Efficient Iterative Pose Estimation using an Invariant to Rotations
    Tahri, Omar
    Araujo, Helder
    Mezouar, Youcef
    Chaumette, Francois
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (02) : 199 - 207
  • [8] Efficient Parallel Random Sample Matching for Pose Estimation, Localization, and Related Problems
    Kubus, Daniel
    Iser, Rene
    Winkelbach, Simon
    Wahl, Friedrich M.
    ADVANCES IN ROBOTICS RESEARCH, 2009, : 239 - 250
  • [9] Accurate Object Pose Estimation Using Depth Only
    Li, Mingyu
    Hashimoto, Koichi
    SENSORS, 2018, 18 (04)
  • [10] 3D Human Pose Estimation Based on Random Forest Misclassification Processing Mechanism
    Cai Y.-H.
    Wang X.-Y.
    Ma J.
    Kong X.-R.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (07): : 1457 - 1466