LOWER BOUNDS FOR K-DNF RESOLUTION ON RANDOM 3-CNFS

被引:5
作者
Alekhnovich, Michael [1 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
关键词
Propositional proof complexity; random CNFs;
D O I
10.1007/s00037-011-0026-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove exponential lower bounds on refutations of a random 3-CNF with linear number of clauses by k-DNF Resolution for k <= root log n/log log n. For this we design a specially tailored random restrictions that preserve the structure of the input random 3-CNF while mapping every k-DNF with large covering number to one with high probability. Next we make use of the switching lemma for small restrictions by Segerlind, Buss and Impagliazzo to prove the lower bound. This work improves the previously known lower bound for Res(2) system on random 3-CNFs by Atserias, Bonet and Esteban and the result of Segerlind, Buss, Impagliazzo stating that random O(k(2))-CNF do not possess short Res(k)refutations.
引用
收藏
页码:597 / 614
页数:18
相关论文
共 12 条
  • [1] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 34 (01) : 67 - 88
  • [2] Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas
    Alekhnovich, Michael
    Hirsch, Edward A.
    Itsykson, Dmitry
    [J]. JOURNAL OF AUTOMATED REASONING, 2005, 35 (1-3) : 51 - 72
  • [3] Alekhnovich Michael, 2003, Proceedings of the Steklov Institute of Mathematics, V242, P18
  • [4] Lower bounds for the weak pigeonhole principle and random formulas beyond resolution
    Atserias, A
    Bonet, ML
    Esteban, JL
    [J]. INFORMATION AND COMPUTATION, 2002, 176 (02) : 136 - 152
  • [5] The efficiency of resolution and Davis-Putnam procedures
    Beame, P
    Karp, R
    Pitassi, T
    Saks, M
    [J]. SIAM JOURNAL ON COMPUTING, 2002, 31 (04) : 1048 - 1075
  • [6] Ben-Sasson E., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P415, DOI 10.1109/SFFCS.1999.814613
  • [7] Short proofs are narrow - Resolution made simple
    Ben-Sasson, E
    Wigderson, A
    [J]. JOURNAL OF THE ACM, 2001, 48 (02) : 149 - 169
  • [8] MANY HARD EXAMPLES FOR RESOLUTION
    CHVATAL, V
    SZEMEREDI, E
    [J]. JOURNAL OF THE ACM, 1988, 35 (04) : 759 - 768
  • [9] Feige U, 2002, ANN IEEE CONF COMPUT, P5
  • [10] Sharp thresholds of graph properties, and the k-sat problem
    Friedgut, E
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) : 1017 - 1054