Integration of periodic, sub-wavelength structures in silicon-on-insulator photonic device design

被引:12
作者
D'Mello, Yannick [1 ]
Reshef, Orad [2 ]
Bernal, Santiago [1 ]
El-fiky, Eslam [1 ,3 ]
Wang, Yun [1 ]
Jacques, Maxime [1 ]
Plant, David V. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3E 0E9, Canada
[2] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[3] Alexandria Univ, Dept Elect Engn, Alexandria 21544, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
silicon-on-insulator; integrated optics; nanophotonics; silicon; elemental semiconductors; reviews; optical design techniques; light polarisation; optical dispersion; periodic subwavelength structures; silicon-on-insulator photonic device design; high-resolution chip lithography; nanophotonic device development; silicon-on-insulator platform; subwavelength features; photonic band; dispersion engineering; wide array; device functionalities; passive wave manipulation; SOI device design; telecom wavelengths; polarisation selectivity; broadband performance; review; optical response; orthogonal polarisations; conventional nanophotonic device geometry; wavelength; 1550; 0; nm; 1310; Si; WAVE-GUIDE; GRATING COUPLER; REFRACTIVE-INDEX; BRAGG GRATINGS; SLOW-LIGHT; WAVELENGTH; SPLITTER; COMPACT; CHIP; BEAMSPLITTER;
D O I
10.1049/iet-opt.2019.0077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rapid advances in high-resolution chip lithography have accelerated nanophotonic device development on the silicon-on-insulator (SOI) platform. The ability to create sub-wavelength features in silicon has attracted research in photonic band and dispersion engineering and consequently made available a wide array of device functionalities. By drawing on recent demonstrations, the authors review how periodic, sub-wavelength structures are used for passive wave manipulation in SOI device design. The optical response is evaluated for both orthogonal polarisations at the telecom wavelengths of 1310 and 1550 nm. The results offer a versatile toolkit for the integration of these features in conventional nanophotonic device geometries. Notable benefits include a fine control of dispersion, wavelength and polarisation selectivity, and broadband performance.
引用
收藏
页码:125 / 135
页数:11
相关论文
共 104 条
  • [1] Low-Power consumption Franz-Keldysh effect plasmonic modulator
    Abadia, N.
    Bernadin, T.
    Chaisakul, P.
    Olivier, S.
    Marris-Morini, D.
    de Lamaestre, R. Espiau
    Weeber, J. C.
    Vivien, L.
    [J]. OPTICS EXPRESS, 2014, 22 (09): : 11236 - 11243
  • [2] CMOS-compatible multi-band plasmonic TE-pass polarizer
    Abadia, Nicolas
    Saber, Md. Ghulam
    Bello, Frank
    Samani, Alireza
    El-Fiky, Eslam
    Wang, Yun
    Donegan, John F.
    Plant, David V.
    [J]. OPTICS EXPRESS, 2018, 26 (23): : 30292 - 30304
  • [3] Guiding and confining light in void nanostructure
    Almeida, VR
    Xu, QF
    Barrios, CA
    Lipson, M
    [J]. OPTICS LETTERS, 2004, 29 (11) : 1209 - 1211
  • [4] [Anonymous], NANOSOI DES RUL
  • [5] [Anonymous], 1998, HDB OPTICAL CONSTANT
  • [6] Polarization-transparent microphotonic devices in the strong confinement limit
    Barwicz, Tymon
    Watts, Michael R.
    Popovic, Milos A.
    Rakich, Peter T.
    Socci, Luciano
    Kartner, Franz X.
    Ippen, Erich P.
    Smith, Henry I.
    [J]. NATURE PHOTONICS, 2007, 1 (01) : 57 - 60
  • [7] Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding
    Bauters, Jared F.
    Heck, Martijn J. R.
    John, Demis D.
    Barton, Jonathon S.
    Bruinink, Christiaan M.
    Leinse, Arne
    Heideman, Rene G.
    Blumenthal, Daniel J.
    Bowers, John E.
    [J]. OPTICS EXPRESS, 2011, 19 (24): : 24090 - 24101
  • [8] BERTHIER S, 1980, OPT COMMUN, V33, P303, DOI 10.1016/0030-4018(80)90249-7
  • [9] Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide
    Bock, Przemek J.
    Cheben, Pavel
    Schmid, Jens H.
    Lapointe, Jean
    Delage, Andre
    Janz, Siegfried
    Aers, Geof C.
    Xu, Dan-Xia
    Densmore, Adam
    Hall, Trevor J.
    [J]. OPTICS EXPRESS, 2010, 18 (19): : 20251 - 20262
  • [10] Brown T.G., 2002, FIBER OPTICS HDB, P11