3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering

被引:32
|
作者
Iglesias-Mejuto, Ana [1 ]
Garcia-Gonzalez, Carlos A. [1 ]
机构
[1] Univ Santiago de Compostela, iMATUS & Hlth Res Inst Santiago deCompostela IDIS, Dept Pharmacol Pharm & Pharmaceut Technol, Fac Pharm,ID Farma Grp GI 1645, E-15782 Santiago De Compostela, Spain
关键词
3D-printing; glutaraldehyde; aerogel; hydroxyapatite; bone scaffold; LINKING STRATEGIES; DRUG-DELIVERY; HYDROXYAPATITE; BIOMATERIALS; ADSORPTION; MEMBRANES;
D O I
10.3390/polym14061211
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The fabrication of bioactive three-dimensional (3D) hydrogel scaffolds from biocompatible materials with a complex inner structure (mesoporous and macroporous) and highly interconnected porosity is crucial for bone tissue engineering (BTE). 3D-printing technology combined with aerogel processing allows the fabrication of functional nanostructured scaffolds from polysaccharides for BTE with personalized geometry, porosity and composition. However, these aerogels are usually fragile, with fast biodegradation rates in biological aqueous fluids, and they lack the sterility required for clinical practice. In this work, reinforced alginate-hydroxyapatite (HA) aerogel scaffolds for BTE applications were obtained by a dual strategy that combines extrusion-based 3D-printing and supercritical CO2 gel drying with an extra crosslinking step. Gel ageing in CaCl2 solutions and glutaraldehyde (GA) chemical crosslinking of aerogels were performed as intermediate and post-processing reinforcement strategies to achieve highly crosslinked aerogel scaffolds. Nitrogen adsorption-desorption (BET) and SEM analyses were performed to assess the textural parameters of the resulting alginate-HA aerogel scaffolds. The biological evaluation of the aerogel scaffolds was performed regarding cell viability, hemolytic activity and bioactivity for BTE. The impact of scCO(2)-based post-sterilization treatment on scaffold properties was also assessed. The obtained aerogels were dual porous, bio- and hemocompatible, as well as endowed with high bioactivity that is dependent on the HA content. This work is a step forward towards the optimization of the physicochemical performance of advanced biomaterials and their sterilization.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Biological study of polyethyleneimine functionalized polycaprolactone 3D-printed scaffolds for bone tissue engineering
    Khoshnood, Negin
    Shahrezayee, Mohammad Hossein
    Shahrezayee, Mostafa
    Shams, Alireza
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (29)
  • [22] 3D Printed Eggshell Microparticle-Laden Thermoplastic Scaffolds for Bone Tissue Engineering
    Gezek, Mert
    Altunbek, Mine
    Gouveia, Maria Eduarda Torres
    Camci-Unal, Gulden
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (26) : 32957 - 32970
  • [23] The effect of 3D-printed bone tissue scaffolds geometrical designs on bacterial biofilm formation
    Al-Tamimi, Abdulsalam A.
    Aldawood, Esraa
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (01) : 324 - 338
  • [24] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Kumar, Pawan
    Shamim
    Muztaba, Mohammad
    Ali, Tarmeen
    Bala, Jyoti
    Sidhu, Haramritpal Singh
    Bhatia, Amit
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (05) : 1184 - 1194
  • [25] 3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model
    Nandi, Samit Kumar
    Fielding, Gary
    Banerjee, Dishary
    Bandyopadhyay, Amit
    Bose, Susmita
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (14) : 1939 - 1947
  • [26] Bioinstructive 3D-Printed Magnesium-Baghdadite Bioceramic Scaffolds for Bone Tissue Engineering
    Zhang, Anyu
    Lu, Zufu
    Roohani, Iman
    Liu, Bingyan
    Jarvis, Karyn L.
    Tan, Richard
    Wise, Steven G.
    Bilek, Marcela M. M.
    Mirkhalaf, Mohammad
    Akhavan, Behnam
    Zreiqat, Hala
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (10) : 15220 - 15236
  • [27] 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering
    Carrow, James K.
    Di Luca, Andrea
    Dolatshahi-Pirouz, Alireza
    Moroni, Lorenzo
    Gaharwar, Akhilesh K.
    REGENERATIVE BIOMATERIALS, 2019, 6 (01) : 29 - 37
  • [28] 3D-printed polylactic acid scaffolds for bone tissue engineering: Bioactivity enhancing strategies based on composite filaments and coatings
    Dukle, Amey
    Sankar, M. Ravi
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [29] Bioinstructive 3D-Printed Magnesium-Baghdadite Bioceramic Scaffolds for Bone Tissue Engineering
    Zhang, Anyu
    Lu, Zufu
    Roohani, Iman
    Liu, Bingyan
    Jarvis, Karyn L.
    Tan, Richard
    Wise, Steven G.
    Bilek, Marcela M. M.
    Mirkhalaf, Mohammad
    Akhavan, Behnam
    Zreiqat, Hala
    ACS APPLIED MATERIALS & INTERFACES, 2025,
  • [30] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Pawan Kumar
    Mohammad Shamim
    Tarmeen Muztaba
    Jyoti Ali
    Haramritpal Singh Bala
    Amit Sidhu
    Annals of Biomedical Engineering, 2024, 52 : 1184 - 1194