Brain Vessel Segmentation Using Deep Learning-A Review

被引:18
作者
Goni, Mohammad Raihan [1 ]
Ruhaiyem, Nur Intan Raihana [1 ]
Mustapha, Muzaimi [2 ]
Achuthan, Anusha [1 ]
Nassir, Che Mohd Nasril Che Mohd [2 ,3 ,4 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
[2] UniversitiSainsMalaysia, Sch Med Sci, Dept Neurosci, Kubang Kerian 16150, Kelantan, Malaysia
[3] Univ Kebangsaan, Dept Radiol, Malaysia Med Ctr, Kuala Lumpur 56000, Malaysia
[4] Neuro Psychol & Islamic Res & Consultancy Pty Ltd, ZA-7764 Cape Town, South Africa
关键词
Image segmentation; Biomedical imaging; Deep learning; Three-dimensional displays; Magnetic resonance imaging; Hypertension; Brain modeling; Brain vessel segmentation; convolutional neural network; deep learning; magnetic resonance angiogram; CONVOLUTIONAL NEURAL-NETWORK; CEREBROVASCULAR SEGMENTATION; 3D; IMAGES; MODEL; ANEURYSMS; DISEASE; MRI;
D O I
10.1109/ACCESS.2022.3214987
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article provides a comprehensive review of deep learning-based blood vessel segmentation of the brain. Cerebrovascular disease develops when blood arteries in the brain are compromised, resulting in severe brain injuries such as ischemic stroke, brain hemorrhages, and many more. Early detection enables patients to obtain more effective treatment before becoming critically unwell. Due to the superior efficiency and accuracy compared to manual segmentation and other computer-assisted diagnosis procedures, deep learning algorithms have been extensively deployed in brain vascular segmentation. This study examined current articles on deep learning-based brain vascular segmentation, which examined the proposed methodologies, particularly the network architectures, and determined the model trend. We evaluated challenges and crucial factors associated with the application of deep learning to brain vascular segmentation, as well as future research prospects. This paper will assist researchers in developing more sophisticated and robust models in the future to develop deep learning solutions.
引用
收藏
页码:111322 / 111336
页数:15
相关论文
共 92 条
[51]   Deep Learning in the Management of Intracranial Aneurysms and Cerebrovascular Diseases: A Review of the Current Literature [J].
Mensah, Emmanuel ;
Pringle, Catherine ;
Roberts, Gareth ;
Gurusinghe, Nihal ;
Golash, Aprajay ;
Alalade, Andrew F. .
WORLD NEUROSURGERY, 2022, 161 :39-45
[52]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[53]  
Mishra A., 2010, DECOUPLED DEFORMABLE
[54]  
Moeskops Pim, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P478, DOI 10.1007/978-3-319-46723-8_55
[55]  
Mozaffarian D, 2016, CIRCULATION, V133, pE38, DOI 10.1161/CIR.0000000000000350
[56]   Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography [J].
Nakao, Takahiro ;
Hanaoka, Shouhei ;
Nomura, Yukihiro ;
Sato, Issei ;
Nemoto, Mitsutaka ;
Miki, Soichiro ;
Maeda, Eriko ;
Yoshikawa, Takeharu ;
Hayashi, Naoto ;
Abe, Osamu .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (04) :948-953
[57]   Global channel attention networks for intracranial vessel segmentation [J].
Ni, Jiajia ;
Wu, Jianhuang ;
Wang, Haoyu ;
Tong, Jing ;
Chen, Zhengming ;
Wong, Kelvin L. ;
Abbott, Derek .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 118
[58]  
Othman AA, 2011, IFIP ADV INF COMM TE, V363, P260
[59]  
Pantoni L., 2014, CEREBRAL SMALL VESSE, P1, DOI 10.1017/CBO9781139382694.002
[60]   Deep Learning-Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model [J].
Park, Allison ;
Chute, Chris ;
Rajpurkar, Pranav ;
Lou, Joe ;
Ball, Robyn L. ;
Shpanskaya, Katie ;
Jabarkheel, Rashad ;
Kim, Lily H. ;
McKenna, Emily ;
Tseng, Joe ;
Ni, Jason ;
Wishah, Fidaa ;
Wittber, Fred ;
Hong, David S. ;
Wilson, Thomas J. ;
Halabi, Safwan ;
Basu, Sanjay ;
Patel, Bhavik N. ;
Lungren, Matthew P. ;
Ng, Andrew Y. ;
Yeom, Kristen W. .
JAMA NETWORK OPEN, 2019, 2 (06) :e195600