Economic performance assessment of elemental sulfur recovery with carbonate melt desulfurization process

被引:10
作者
Lee, Juwon [1 ,2 ]
Ahn, Yuchan [3 ]
Cho, Hyungtae [1 ]
Kim, Junghwan [1 ]
机构
[1] Korea Inst Ind Technol, Green Mat & Proc R&D Grp, 55 Jongga Ro, Ulsan 44413, South Korea
[2] Yonsei Univ, Chem & Biomol Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Keimyung Univ, Dept Chem Engn, Dalgubeol Dae Ro 1095, Daegu 42601, South Korea
关键词
Carbonate melt; Flue gas desulfurization; Elemental sulfur recovery; Claus process; Economic feasibility; FLUE-GAS; HIGH-TEMPERATURE; SULFIDE; COAL; SO2; HYDROLYSIS; ENERGY; PLANT; TECHNOLOGIES; CHEMISTRY;
D O I
10.1016/j.psep.2021.12.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study develops an elemental sulfur recovery (ESR) process from sulfur dioxide (SO2) as a hazardous material removed from flue gas emitted at thermal coal-fired power plants with a carbonate melt flue gas desulfurization (CMFGD) process. The carbonyl sulfide (COS) generated as a byproduct after removing SO2 from flue gas using carbonate melt in the CMFDG is utilized as a resource to produce elemental sulfur by applying the hydrolysis and Claus processes in the ESR process. In addition, to increase energy in-dependence in the integrated CMFGD-ESR process, heat integration was applied by introducing new heat exchanger networks that utilize the waste heat in the proposed process. The levelized cost of the integrated CMFGD-ESR process was determined to be US$ 811 per ton SO2 removed; from this result, the proposed process to remove hazardous material from flue gas emitted at thermal coal-fired power plants is economically benign compared to conventional SO2 removal processes (US$ 500 similar to US$ 1200 per ton SO2 removed), which use limestone as the raw material. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 49 条
  • [1] Alibaba, HIGH QUAL ACT AL 95
  • [2] Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years
    Aydin, M.
    Fudge, T. J.
    Verhulst, K. R.
    Nicewonger, M. R.
    Waddington, E. D.
    Saltzman, E. S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (13) : 8500 - 8514
  • [3] Baasel W.D., 1988, CONTROL ASS, V38, P327, DOI [10.1080/08940630.1988.10466384, DOI 10.1080/08940630.1988.10466384]
  • [4] Composition and size distribution of particules emissions from a coal-fired power plant in India
    Bhanarkar, A. D.
    Gavane, A. G.
    Tajne, D. S.
    Tamhane, S. M.
    Nema, P.
    [J]. FUEL, 2008, 87 (10-11) : 2095 - 2101
  • [5] Cassir M, 2016, WOODHEAD PUBL SER EN, P71, DOI 10.1016/B978-1-78242-363-8.00003-7
  • [6] STUDIES OF CARBONYL SULFIDE TOXICITY - METABOLISM BY CARBONIC-ANHYDRASE
    CHENGELIS, CP
    NEAL, RA
    [J]. TOXICOLOGY AND APPLIED PHARMACOLOGY, 1980, 55 (01) : 198 - 202
  • [7] Impact of solid waste treatment from spray dryer absorber on the levelized cost of energy of a coal-fired power plant
    Cruz, Matheus de Andrade
    Fernandes Araujo, Ofella de Queiroz
    de Medeiros, Jose Luiz
    Vieira de Castro, Rui de Paula
    Ribeiro, Gabriel Travagini
    de Oliveira, Vanessa Reich
    [J]. JOURNAL OF CLEANER PRODUCTION, 2017, 164 : 1623 - 1634
  • [8] THE CHEMISTRY OF CARBONYL SULFIDE
    FERM, RJ
    [J]. CHEMICAL REVIEWS, 1957, 57 (04) : 621 - 640
  • [9] Molten carbonates for advanced and sustainable energy applications: Part I. Revisiting molten carbonate properties from a sustainable viewpoint
    Frangini, S.
    Masi, A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) : 18739 - 18746
  • [10] Freni S, 1998, STUD SURF SCI CATAL, V119, P53