Approximation of linear hyperbolic interface problems on finite element: Some new estimates

被引:2
作者
Adewole, Matthew O. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
关键词
Hyperbolic interface; Fully discrete; Almost optimal; Discrete maximum principle; DOMAIN DECOMPOSITION; PARABOLIC PROBLEMS; GALERKIN METHODS; CONVERGENCE; SEMIDISCRETE; EQUATIONS; FEM;
D O I
10.1016/j.amc.2018.12.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element solution of a linear hyperbolic interface problem with time discretization based on 3-step implicit scheme is proposed. Quasi-uniform triangular elements are used for the spatial discretization. With low regularity assumption on the solution across the interface, the stability of the scheme is established and almost optimal convergence rates in L-2(Omega) and H-1(Omega) norms are obtained. In terms of matrices arising in the scheme, we show that the discrete solution satisfies the maximum principle under certain conditions on the mesh parameter h and time step k. Numerical experiments are presented to support the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
[31]   AN UNFITTED hp-INTERFACE PENALTY FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS [J].
Wu, Haijun ;
Xiao, Yuanming .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (03) :316-339
[32]   FINITE ELEMENT APPROXIMATION OF SPARSE PARABOLIC CONTROL PROBLEMS [J].
Casas, Eduardo ;
Mateos, Mariano ;
Roesch, Arnd .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) :393-417
[33]   Optimal A Priori Error Estimates for Elliptic Interface Problems: Weak Galerkin Mixed Finite Element Approximations [J].
Kumar, Raman ;
Deka, Bhupen .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
[34]   Stable generalized finite element method (SGFEM) for parabolic interface problems [J].
Zhu, Pengfei ;
Zhang, Qinghui ;
Liu, Tingyun .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
[35]   New Interpolation Error Estimates and A Posteriori Error Analysis for Linear Parabolic Interface Problems [J].
Sen Gupta, Jhuma ;
Sinha, Rajen Kumar ;
Reddy, G. Murali Mohan ;
Jain, Jinank .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (02) :570-598
[36]   INTERIOR ESTIMATES OF SEMIDISCRETE FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS WITH DISTRIBUTIONAL DATA [J].
Guo, Li ;
Li, Hengguang ;
Yang, Yang .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) :458-474
[37]   A NEW ERROR ANALYSIS FOR DISCONTINUOUS FINITE ELEMENT METHODS FOR LINEAR ELLIPTIC PROBLEMS [J].
Gudi, Thirupathi .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2169-2189
[38]   Anisotropic Nonconforming Quadrilateral Finite Element Approximation to Second Order Elliptic Problems [J].
Shi, Dong-yang ;
Xu, Chao ;
Chen, Jin-huan .
JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (03) :637-653
[39]   Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain [J].
Kashiwabara, Takahito ;
Kemmochi, Tomoya .
NUMERISCHE MATHEMATIK, 2020, 144 (03) :553-584
[40]   POINTWISE BEST APPROXIMATION RESULTS FOR GALERKIN FINITE ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS [J].
Leykekhman, Dmitriy ;
Vexler, Boris .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1365-1384