Approximation of linear hyperbolic interface problems on finite element: Some new estimates

被引:2
作者
Adewole, Matthew O. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
关键词
Hyperbolic interface; Fully discrete; Almost optimal; Discrete maximum principle; DOMAIN DECOMPOSITION; PARABOLIC PROBLEMS; GALERKIN METHODS; CONVERGENCE; SEMIDISCRETE; EQUATIONS; FEM;
D O I
10.1016/j.amc.2018.12.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element solution of a linear hyperbolic interface problem with time discretization based on 3-step implicit scheme is proposed. Quasi-uniform triangular elements are used for the spatial discretization. With low regularity assumption on the solution across the interface, the stability of the scheme is established and almost optimal convergence rates in L-2(Omega) and H-1(Omega) norms are obtained. In terms of matrices arising in the scheme, we show that the discrete solution satisfies the maximum principle under certain conditions on the mesh parameter h and time step k. Numerical experiments are presented to support the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
[21]   Two-grid methods of finite element solutions for semi-linear elliptic interface problems [J].
Chen, Yanping ;
Li, Qingfeng ;
Wang, Yang ;
Huang, Yunqing .
NUMERICAL ALGORITHMS, 2020, 84 (01) :307-330
[22]   Finite element approximation of fractional Neumann problems [J].
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) :3207-3240
[23]   A new weak Galerkin finite element method for elliptic interface problems [J].
Mu, Lin ;
Wang, Junping ;
Ye, Xiu ;
Zhao, Shan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 325 :157-173
[24]   Superconvergence of a Nonconforming Interface Penalty Finite Element Method for Elliptic Interface Problems [J].
He, Xiaoxiao .
AXIOMS, 2025, 14 (05)
[25]   SOME A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC AND PARABOLIC LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Audouze, Christophe ;
Nair, Prasanth B. .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (05) :423-454
[26]   Finite element methods for semilinear elliptic and parabolic interface problems [J].
Sinha, Rajen K. ;
Deka, Bhupen .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) :1870-1883
[27]   An immersed discontinuous finite element method for Stokes interface problems [J].
Adjerid, Slimane ;
Chaabane, Nabil ;
Lin, Tao .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 293 :170-190
[28]   SOME OBSERVATIONS ON THE INTERACTION BETWEEN LINEAR AND NONLINEAR STABILIZATION FOR CONTINUOUS FINITE ELEMENT METHODS APPLIED TO HYPERBOLIC CONSERVATION LAWS [J].
Burman, Erik .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01) :A96-A122
[29]   An Interface-Unfitted Finite Element Method for Elliptic Interface Optimal Control Problems [J].
Yang, Chaochao ;
Wang, Tao ;
Xie, Xiaoping .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) :727-749
[30]   L∞(L2) AND L∞(H1) NORMS ERROR ESTIMATES IN FINITE ELEMENT METHOD FOR LINEAR PARABOLIC INTERFACE PROBLEMS [J].
Deka, Bhupen ;
Sinha, Rajen K. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (03) :267-285