Approximation of linear hyperbolic interface problems on finite element: Some new estimates

被引:2
作者
Adewole, Matthew O. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
关键词
Hyperbolic interface; Fully discrete; Almost optimal; Discrete maximum principle; DOMAIN DECOMPOSITION; PARABOLIC PROBLEMS; GALERKIN METHODS; CONVERGENCE; SEMIDISCRETE; EQUATIONS; FEM;
D O I
10.1016/j.amc.2018.12.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element solution of a linear hyperbolic interface problem with time discretization based on 3-step implicit scheme is proposed. Quasi-uniform triangular elements are used for the spatial discretization. With low regularity assumption on the solution across the interface, the stability of the scheme is established and almost optimal convergence rates in L-2(Omega) and H-1(Omega) norms are obtained. In terms of matrices arising in the scheme, we show that the discrete solution satisfies the maximum principle under certain conditions on the mesh parameter h and time step k. Numerical experiments are presented to support the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [1] Finite element methods for second order linear hyperbolic interface problems
    Deka, Bhupen
    Sinha, Rajen Kumar
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 10922 - 10933
  • [2] SOME ERROR ESTIMATES OF FINITE VOLUME ELEMENT APPROXIMATION FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 697 - 711
  • [3] Pointwise error estimates for linear finite element approximation to elliptic Dirichlet problems in smooth domains
    Gong, Wei
    Liang, Dongdong
    Xie, Xiaoping
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
  • [4] Residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems
    Ray, Tanushree
    Sinha, Rajen Kumar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2935 - 2962
  • [5] Numerical approximation of elliptic interface problems via isoparametric finite element methods
    Varsakelis, C.
    Marichal, Y.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1945 - 1962
  • [6] A Priori Error Estimates of Mixed Finite Element Methods for General Linear Hyperbolic Convex Optimal Control Problems
    Lu, Zuliang
    Huang, Xiao
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] Galerkin Finite Element Approximation of General Linear Second Order Hyperbolic Equations
    Basson, M.
    van Rensburg, N. F. J.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (09) : 976 - 1000
  • [8] A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS
    Chu, C-C.
    Graham, I. G.
    Hou, T-Y.
    MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1915 - 1955
  • [9] Some error estimates of finite volume element method for parabolic optimal control problems
    Luo, Xianbing
    Chen, Yanping
    Huang, Yunqing
    Hou, Tianliang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (02) : 145 - 165
  • [10] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914