Single-source chemical vapor deposition of 3C-SiC films in a LPCVD reactor - I. Growth, structure, and chemical characterization

被引:50
作者
Wijesundara, MBJ [1 ]
Valente, G
Ashurst, WR
Howe, RT
Pisano, AP
Carraro, C
Maboudian, R
机构
[1] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Dept Chem Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[4] Politecn Milan, Dipartimento Chim Ingn Chim Mat G Natta, I-20131 Milan, Italy
关键词
D O I
10.1149/1.1646141
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report the deposition of 3C-SiC films on an Si(100) substrate from 1,3-disilabutane precursor molecule utilizing a conventional low-pressure chemical vapor deposition (CVD) system. The chemical, structural, and growth properties of the resulting films are investigated as functions of deposition temperature and flow rates. Based on X-ray photoelectron spectroscopy, the films deposited at temperatures as low as 650degreesC are indeed carbidic. X-ray diffraction analysis indicates the films to be amorphous up to 750degreesC, above which they become polycrystalline. The effect of process parameters on film uniformity is also reported. Highly uniform films are achieved at 800degreesC and lower, essentially independent of the flow rate. (C) 2004 The Electrochemical Society.
引用
收藏
页码:C210 / C214
页数:5
相关论文
共 18 条
[1]   High vacuum chemical vapor deposition of cubic SiC thin films on Si(001) substrates using single source precursor [J].
Boo, JH ;
Lee, SB ;
Yu, KS ;
Sung, MM ;
Kim, Y .
SURFACE & COATINGS TECHNOLOGY, 2000, 131 (1-3) :147-152
[2]   Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review [J].
Casady, JB ;
Johnson, RW .
SOLID-STATE ELECTRONICS, 1996, 39 (10) :1409-1422
[3]   SINGLE-CRYSTALLINE, EPITAXIAL CUBIC SIC FILMS GROWN ON (100) SI AT 750-DEGREES-C BY CHEMICAL VAPOR-DEPOSITION [J].
GOLECKI, I ;
REIDINGER, F ;
MARTI, J .
APPLIED PHYSICS LETTERS, 1992, 60 (14) :1703-1705
[4]  
Hurtós E, 2000, J APPL PHYS, V87, P1748, DOI 10.1063/1.372087
[5]   SiC material for high-power applications [J].
Janzen, E ;
Kordina, O .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 46 (1-3) :203-209
[6]   MICROMACHINING OF SILICON MECHANICAL STRUCTURES [J].
KAMINSKY, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1985, 3 (04) :1015-1024
[7]   Silicon carbide for microelectromechanical systems [J].
Mehregany, M ;
Zorman, CA ;
Roy, S ;
Fleischman, AJ ;
Wu, CH ;
Rajan, N .
INTERNATIONAL MATERIALS REVIEWS, 2000, 45 (03) :85-108
[8]   SiC power devices for high voltage applications [J].
Rottner, K ;
Frischholz, M ;
Myrtveit, T ;
Mou, D ;
Nordgren, K ;
Henry, A ;
Hallin, C ;
Gustafsson, U ;
Schöner, A .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 61-2 :330-338
[9]   Silicon carbide as a new MEMS technology [J].
Sarro, PM .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 82 (1-3) :210-218
[10]   HARTREE-SLATER SUBSHELL PHOTOIONIZATION CROSS-SECTIONS AT 1254 AND 1487EV [J].
SCOFIELD, JH .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1976, 8 (02) :129-137