Accuracy and optimal sampling in Monte Carlo solution of population balance equations

被引:10
作者
Yu, Xi [1 ,2 ]
Hounslow, Michael J. [2 ]
Reynolds, Gavin K. [3 ]
机构
[1] Aston Univ, Sch Engn & Appl Sci, EBRI, Birmingham B4 7ET, W Midlands, England
[2] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England
[3] AstraZeneca, Pharmaceut Dev, Macclesfield SK10 2NA, Cheshire, England
关键词
Monte Carlo; population balance model; Hellinger distance; optimal sampling; accuracy; coalescence; HELLINGER DISTANCE ESTIMATION; FIXED PIVOT TECHNIQUE; DISPERSED SYSTEMS; SIMULATION; MODEL; AGGREGATION; COAGULATION; GRANULATION; GROWTH; NUCLEATION;
D O I
10.1002/aic.14837
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Implementation of a Monte Carlo simulation for the solution of population balance equations (PBEs) requires choice of initial sample number (N-0), number of replicates (M), and number of bins for probability distribution reconstruction (n). It is found that Squared Hellinger Distance, H-2, is a useful measurement of the accuracy of Monte Carlo (MC) simulation, and can be related directly to N-0, M, and n. Asymptotic approximations of H-2 are deduced and tested for both one-dimensional (1-D) and 2-D PBEs with coalescence. The central processing unit (CPU) cost, C, is found in a power-law relationship, C = aMN(0)(b), with the CPU cost index, b, indicating the weighting of N-0 in the total CPU cost. n must be chosen to balance accuracy and resolution. For fixed n, M x N-0 determines the accuracy of MC prediction; if b>1, then the optimal solution strategy uses multiple replications and small sample size. Conversely, if 0<b<1, one replicate and a large initial sample size is preferred. (c) 2015 American Institute of Chemical Engineers AIChE J, 61: 2394-2402, 2015
引用
收藏
页码:2394 / 2402
页数:9
相关论文
共 35 条
  • [1] [Anonymous], 1996, NUMERICAL RECIPES FO
  • [2] Tests of hypotheses in discrete models based on the penalized Hellinger distance
    Basu, A
    Harris, IR
    Basu, S
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 27 (04) : 367 - 373
  • [3] Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction
    Braumann, Andreas
    Goodson, Mike J.
    Kraft, Markus
    Mort, Paul R.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2007, 62 (17) : 4717 - 4728
  • [4] The Inverse Problem in Granulation Modeling-Two Different Statistical Approaches
    Braumann, Andreas
    Man, Peter L. W.
    Kraft, Markus
    [J]. AICHE JOURNAL, 2011, 57 (11) : 3105 - 3121
  • [5] Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation
    Braumann, Andreas
    Kraft, Markus
    Wagner, Wolfgang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) : 7672 - 7691
  • [6] Statistical Approximation of the Inverse Problem in Multivariate Population Balance Modeling
    Braumann, Andreas
    Man, Peter L. W.
    Kraft, Markus
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (01) : 428 - 438
  • [7] Parameter estimation in a multidimensional granulation model
    Braumann, Andreas
    Kraft, Markus
    Mort, Paul R.
    [J]. POWDER TECHNOLOGY, 2010, 197 (03) : 196 - 210
  • [8] Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting
    Celnik, Matthew
    Patterson, Robert
    Kraft, Markus
    Wagner, Wolfgang
    [J]. COMBUSTION AND FLAME, 2007, 148 (03) : 158 - 176
  • [9] DANIEL T, 1976, J COMPUT PHYS, V22, P403
  • [10] Hybrid Monte Carlo method for simulation of two-component aerosol coagulation and phase segregation
    Efendiev, Y
    Zachariah, MR
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 249 (01) : 30 - 43