Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm

被引:67
作者
Meng, Xiangchen [1 ,2 ]
Cheng, Jie [1 ,2 ]
Zhao, Shaohua [3 ]
Liu, Sihan [3 ]
Yao, Yunjun [1 ,2 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China
[3] Minist Environm Protect, Satellite Environm Ctr, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Landsat8; Enterprise; LST; SURFRAD; HiWATER; TIPEX-III; SPLIT-WINDOW ALGORITHM; RADIATION BUDGET NETWORK; FOREST-FIRE RISK; EMISSIVITY SEPARATION; ARID AREA; RETRIEVAL; SATELLITE; VALIDATION; DERIVATION; SURFRAD;
D O I
10.3390/rs11020155
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land surface temperature (LST) is one of the key parameters in hydrology, meteorology, and the surface energy balance. The National Oceanic and Atmospheric Administration (NOAA) Joint Polar Satellite System (JPSS) Enterprise algorithm is adapted to Landsat-8 data to obtain the estimate of LST. The coefficients of the Enterprise algorithm were obtained by linear regression using the analog data produced by comprehensive radiative transfer modeling. The performance of the Enterprise algorithm was first tested by simulation data and then validated by ground measurements. In addition, the accuracy of the Enterprise algorithm was compared to the generalized split-window algorithm and the split-window algorithm of Sobrino et al. (1996). The validation results indicate the Enterprise algorithm has a comparable accuracy to the other two split-window algorithms. The biases (root mean square errors) of the Enterprise algorithm were 1.38 (3.22), 1.01 (2.32), 1.99 (3.49), 2.53 (3.46), and -0.15 K (1.11 K) at the SURFRAD, HiWATER_A, HiWATER_B, HiWATER_C sites and BanGe site, respectively, whereas those values were 1.39 (3.20), 1.0 (2.30), 1.93 (3.48), 2.53 (3.35), and -0.35 K (1.16 K) for the generalized split-window algorithm, 1.45 (3.39), 1.08 (2.41), 2.16 (3.67), 2.52 (3.58), and 0.02 K (1.12 K) for the split-window algorithm of Sobrino, respectively. This study provides an alternative method to estimate LST from Landsat-8 data.
引用
收藏
页数:18
相关论文
共 73 条
[1]  
[Anonymous], P 14 INT TOVS STUD C
[2]  
[Anonymous], GLASS GLOBAL LAND SU
[3]  
[Anonymous], BEST PRACT SATELL DE
[4]  
[Anonymous], 1997, REMOTE SENS ENVIRON
[5]  
[Anonymous], REMOTE SENS ENVIRON
[6]   An update on SURFRAD - The GCOS Surface Radiation budget network for the continental United States [J].
Augustine, JA ;
Hodges, GB ;
Cornwall, CR ;
Michalsky, JJ ;
Medina, CI .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2005, 22 (10) :1460-1472
[7]  
Augustine JA, 2000, B AM METEOROL SOC, V81, P2341, DOI 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO
[8]  
2
[9]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[10]   Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration [J].
Barsi, Julia A. ;
Schott, John R. ;
Hook, Simon J. ;
Raqueno, Nina G. ;
Markham, Brian L. ;
Radocinski, Robert G. .
REMOTE SENSING, 2014, 6 (11) :11607-11626