Nontrivial 1-parameter families of zero-curvature representations obtained via symmetry actions

被引:7
作者
Catalano Ferraioli, D. [1 ]
de Oliveira Silva, L. A. [1 ]
机构
[1] Univ Fed Bahia, Inst Matemat, BR-40170110 Salvador, BA, Brazil
关键词
Zero-curvature representations; Spectral parameters; Symmetries; Integrable equations; Jet spaces; INTEGRABILITY; SURFACES;
D O I
10.1016/j.geomphys.2015.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the problem of constructing a 1-parameter family alpha(lambda) of zero-curvature representations of an equation epsilon, by means of classical symmetry actions on a given zero-curvature representation alpha. By using the cohomology defined by the horizontal gauge differential of alpha, we provide an infinitesimal criterion which permits to identify all infinitesimal classical symmetries of epsilon whose flow could be used to embed alpha into a nontrivial 1-parameter family alpha(lambda) of zero-curvature representations of epsilon. The results of the paper are illustrated with some examples. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 198
页数:14
相关论文
共 20 条
[1]  
[Anonymous], STUD APPL MATH
[2]  
[Anonymous], PROGR THEORET PHYS
[3]  
[Anonymous], BACKLUND DARBOUX TRA
[4]  
[Anonymous], 1993, DIFFERENTIAL GEOMETR
[5]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[6]  
CHERN SS, 1986, STUD APPL MATH, V74, P55
[7]   ON INTEGRABILITY OF THE INHOMOGENEOUS HEISENBERG-FERROMAGNET MODEL - EXAMINATION OF A NEW TEST [J].
CIESLINSKI, J ;
GOLDSTEIN, P ;
SYM, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05) :1645-1664
[8]  
CIESLINSKI J, 1993, J MATH PHYS, V34, P2372, DOI 10.1063/1.530122
[9]   On differential systems describing surfaces of constant curvature [J].
Ding, Q ;
Tenenblat, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) :185-214
[10]  
Diver P. J., 1995, EQUIVALENCE INVARIAN