Lump solutions with higher-order rational dispersion relations

被引:88
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Liqin [3 ,7 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[6] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
[7] Xiamen Inst Technol, Coll Informat Sci & Artificial Intelligence, Xiamen 361021, Fujian, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Symbolic computation; lump solution; dispersion relation; 02; 30; Ik;
D O I
10.1007/s12043-020-1918-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper aims to explore a kind of lump solutions in nonlinear dispersive waves with higher-order rational dispersion relations. We show that the second member in the commuting Kadomtsev-Petviashvili hierarchy is such an example, and construct its lump solutions, based on a Hirota trilinear form. The presented lump solutions have one peak and two valleys, where the global maximum and minimum values are achieved. A few three-dimensional plots and contour plots are made for a specific example of the lumps.
引用
收藏
页数:7
相关论文
共 66 条
[1]   Lumps and rogue waves of generalized Nizhnik-Novikov-Veselov equation [J].
Albares, P. ;
Estevez, P. G. ;
Radha, R. ;
Saranya, R. .
NONLINEAR DYNAMICS, 2017, 90 (04) :2305-2315
[2]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[3]   MULTIDIMENSIONAL SOLITONS AND THEIR SPECTRAL-TRANSFORMS [J].
BOITI, M ;
LEON, JP ;
PEMPINELLI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2612-2618
[4]   Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s [J].
Caudrey, P. J. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1939) :1215-1227
[5]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[6]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[7]   The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation [J].
Dong, Huanhe ;
Zhang, Yong ;
Zhang, Xiaoen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :354-365
[8]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[9]  
DRAZIN PG, 1989, SOLITONS INTRO VOL 2, DOI DOI 10.1017/CBO9781139172059
[10]   Lump Solutions for PDE's: Algorithmic Construction and Classification [J].
Estevez, P. G. ;
Prada, J. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) :166-175