Copure semisimple categories and almost split maps

被引:13
作者
Dung, NV [1 ]
García, JL
机构
[1] Ohio Univ, Dept Math, Zanesville, OH 43701 USA
[2] Univ Murcia, Dept Math, E-30071 Murcia, Spain
关键词
D O I
10.1016/j.jpaa.2003.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study copure semisimple Grothendieck categories, i.e. Krull-Schmidt categories satisfying the artinian condition on morphisms between finitely presented indecomposable objects. It is shown that these categories have many attractive properties, e.g. the endofiniteness of finitely presented objects and the existence of left almost split maps, among others. Applications are given to pure semisimple Grothendieck categories, and categories of locally finite representation type. In particular, we prove the existence of almost split sequences over Grothendieck categories of locally finite representation type with enough projectives. Our methods are based on functor categories and a module theory over Krull-Schmidt rings with enough idempotents. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 94
页数:22
相关论文
共 40 条
[1]  
ALBU T, 1991, OSAKA J MATH, V28, P295
[2]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[3]  
AUSLANDER M, 1978, P C PHILADELPHIA 197, P1
[4]  
Auslander M., 1969, STABLE MODULE THEORY, V94
[5]  
Auslander M., 1974, Commun. Algebra, V1, P177, DOI [10.1080/00927877409412807, DOI 10.1080/00927877409412807]
[6]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[8]   SOME LEFT PURE SEMISIMPLE RINGOIDS WHICH ARE NOT RIGHT PURE SEMISIMPLE [J].
BRUNE, H .
COMMUNICATIONS IN ALGEBRA, 1979, 7 (17) :1795-1803
[9]  
CRAWLEYBOEVEY W, 1994, COMMUN ALGEBRA, V22, P1644
[10]  
CRAWLEYBOEVEY WW, 1992, REPRESENTATIONS ALGE, V168, P127