EVALUATION COMPLEXITY FOR NONLINEAR CONSTRAINED OPTIMIZATION USING UNSCALED KKT CONDITIONS AND HIGH-ORDER MODELS

被引:34
作者
Birgin, E. G. [1 ]
Gardenghi, J. L. [1 ]
Martinez, J. M. [2 ]
Santos, S. A. [2 ]
Toint, Ph. L. [3 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Rua Matao 1010,Cidade Univ, Sao Paulo, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, Brazil
[3] Univ Namur, Dept Math, 61 Rue Bruxelles, B-5000 Namur, Belgium
基金
巴西圣保罗研究基金会;
关键词
nonlinear programming; complexity; approximate KKT point; CUBIC REGULARIZATION; ALGORITHMS;
D O I
10.1137/15M1031631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evaluation complexity of general nonlinear, possibly nonconvex, constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an epsilon-approximate first-order critical point of the problem can be computed in order O(epsilon(1-2(p+1)/p)) evaluations of the problem's functions and their first p derivatives. This is achieved by using a two-phase algorithm inspired by Cartis, Gould, and Toint [SIAM J. Optim., 21 (2011), pp. 1721-1739; SIAM J. Optim., 23 (2013), pp. 1553-1574]. It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the epsilon-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers.
引用
收藏
页码:951 / 967
页数:17
相关论文
共 23 条
[1]   On sequential optimality conditions for smooth constrained optimization [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Martinez, J. M. .
OPTIMIZATION, 2011, 60 (05) :627-641
[2]   A NEW SEQUENTIAL OPTIMALITY CONDITION FOR CONSTRAINED OPTIMIZATION AND ALGORITHMIC CONSEQUENCES [J].
Andreani, Roberto ;
Martinez, J. M. ;
Svaiter, B. F. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :3533-3554
[3]   CONVERGENCE OF A REGULARIZED EUCLIDEAN RESIDUAL ALGORITHM FOR NONLINEAR LEAST-SQUARES [J].
Bellavia, S. ;
Cartis, C. ;
Gould, N. I. M. ;
Morini, B. ;
Toint, Ph. L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :1-29
[4]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[5]  
Birgin E. G., 2015, TECHNICAL REPORT NAX
[6]   CHARACTERIZATIONS OF LOJASIEWICZ INEQUALITIES: SUBGRADIENT FLOWS, TALWEG, CONVEXITY [J].
Bolte, Jerome ;
Daniilidis, Aris ;
Ley, Olivier ;
Mazet, Laurent .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) :3319-3363
[7]   Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization [J].
Cartis, C. ;
Sampaio, Ph R. ;
Toint, Ph L. .
OPTIMIZATION, 2015, 64 (05) :1349-1361
[8]   An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1662-1695
[9]   ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :2833-2852
[10]  
Cartis C., 2014, RALP2014013 RUTH APP