Challenges and Perspectives of DNA Nanostructures in Biomedicine

被引:188
作者
Keller, Adrian [1 ]
Linko, Veikko [2 ,3 ]
机构
[1] Paderborn Univ, Tech & Macromol Chem, Warburger Str 100, D-33098 Paderborn, Germany
[2] Aalto Univ, Dept Bioprod & Biosyst, Biohybrid Mat, Aalto 00076, Finland
[3] Aalto Univ, HYBER Ctr, Dept Appl Phys, POB 15100, Aalto 00076, Finland
关键词
biocompatibility; diagnostics; DNA nanotechnology; drug delivery; nanomedicine; ORIGAMI NANOSTRUCTURES; INTRACELLULAR DELIVERY; FLUORESCENCE ENHANCEMENT; CROSS-LINKING; FOLDING DNA; STABILITY; DOXORUBICIN; BINDING; NANOTUBES; THERAPY;
D O I
10.1002/anie.201916390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA nanotechnology holds substantial promise for future biomedical engineering and the development of novel therapies and diagnostic assays. The subnanometer-level addressability of DNA nanostructures allows for their precise and tailored modification with numerous chemical and biological entities, which makes them fit to serve as accurate diagnostic tools and multifunctional carriers for targeted drug delivery. The absolute control over shape, size, and function enables the fabrication of tailored and dynamic devices, such as DNA nanorobots that can execute programmed tasks and react to various external stimuli. Even though several studies have demonstrated the successful operation of various biomedical DNA nanostructures both in vitro and in vivo, major obstacles remain on the path to real-world applications of DNA-based nanomedicine. Here, we summarize the current status of the field and the main implementations of biomedical DNA nanostructures. In particular, we focus on open challenges and untackled issues and discuss possible solutions.
引用
收藏
页码:15818 / 15833
页数:16
相关论文
共 187 条
[1]   Electrochemical Switching with 3D DNA Tetrahedral Nanostructures Self-Assembled at Gold Electrodes [J].
Abi, Alireza ;
Lin, Meihua ;
Pei, Hao ;
Fan, Chunhai ;
Ferapontova, Elena E. ;
Zuo, Xiaolei .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8928-8931
[2]   Formation of transition metall-doxorubicin complexes inside liposomes [J].
Abraham, SA ;
Edwards, K ;
Karlsson, G ;
MacIntosh, S ;
Mayer, LD ;
McKenzie, C ;
Bally, MB .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2002, 1565 (01) :41-54
[3]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[4]  
Agarwal N. P., 2017, ANGEW CHEM, V129, P5552
[5]   Block Copolymer Micellization as a Protection Strategy for DNA Origami [J].
Agarwal, Nayan P. ;
Matthies, Michael ;
Guer, Fatih N. ;
Osada, Kensuke ;
Schmidt, Thorsten L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5460-5464
[6]   (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures [J].
Ahmadi, Yasaman ;
De Llano, Elisa ;
Barisic, Ivan .
NANOSCALE, 2018, 10 (16) :7494-7504
[7]   Interaction of Doxorubicin with Polynucleotides. A Spectroscopic Study [J].
Airoldi, Marta ;
Barone, Giampaolo ;
Gennaro, Giuseppe ;
Giuliani, Anna Maria ;
Giustini, Mauro .
BIOCHEMISTRY, 2014, 53 (13) :2197-2207
[8]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/nnano.2014.58, 10.1038/NNANO.2014.58]
[9]   Glutaraldehyde Cross-Linking of Oligolysines Coating DNA Origami Greatly Reduces Susceptibility to Nuclease Degradation [J].
Anastassacos, Frances M. ;
Zhao, Zhao ;
Zeng, Yang ;
Shih, William M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) :3311-3315
[10]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75