Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

被引:31
作者
Yamaguchi, Seitaro [1 ,2 ]
Yoshizawa-Fujita, Masahiro [2 ]
Takeoka, Yuko [2 ]
Rikukawa, Masahiro [2 ]
机构
[1] Lintec Corp, R&D Sect, New Mat Dept, Mat Design Lab, 7-7-3 Tsuji, Saitama, Saitama 3360026, Japan
[2] Sophia Univ, Dept Mat & Life Sci, Chiyoda Ku, 7-1 Kioi Cho, Tokyo 1028554, Japan
基金
日本学术振兴会;
关键词
Zwitterion; Lithium-ion battery; Ionic liquid; Lithium cobalt oxide; Graphite; LITHIUM-ION; SECONDARY BATTERIES; ELECTROCHEMICAL PROPERTIES; NEGATIVE ELECTRODE; MOLTEN-SALTS; TEMPERATURE; BIS(FLUOROSULFONYL)IMIDE; CATION; INTERPHASE; SURFACE;
D O I
10.1016/j.jpowsour.2016.09.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 degrees C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0 -+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li vertical bar electrolyte vertical bar LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0 -4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite vertical bar electrolyte vertical bar Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 314
页数:7
相关论文
共 33 条
[21]   Wide-temperature and high-voltage Li||LiCoO2 cells enabled by a nonflammable partially-fluorinated electrolyte with fine-tuning solvation structure [J].
Chen, Cheng ;
Zhang, Shu ;
Xu, Caili ;
Yang, Jian ;
Hu, Youzuo ;
Yu, Lingchao ;
Li, Pengyu ;
Qu, Bing ;
Wu, Mengqiang .
JOURNAL OF ENERGY CHEMISTRY, 2025, 101 :608-618
[22]   Fast Charge Transfer across the Li7La3Zr2O12 Solid Electrolyte/LiCoO2 Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture [J].
Sastre, Jordi ;
Chen, Xubin ;
Aribia, Abdessalem ;
Tiwari, Ayodhya N. ;
Romanyuk, Yaroslav E. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) :36196-36207
[23]   The effects of humidity on the self-discharge properties of Li(Ni1/3Co1/3Mn1/3)O2/graphite and LiCoO2/graphite lithium-ion batteries during storage [J].
Byun, Seoungwoo ;
Park, Joonam ;
Appiah, Williams Agyei ;
Ryou, Myung-Hyun ;
Lee, Yong Min .
RSC ADVANCES, 2017, 7 (18) :10915-10921
[24]   Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties [J].
Liu, Chengyong ;
Ma, Xiaodi ;
Xu, Fei ;
Zheng, Liping ;
Zhang, Heng ;
Feng, Wenfang ;
Huang, Xuejie ;
Armand, Michel ;
Nie, Jin ;
Chen, Hanlin ;
Zhou, Zhibin .
ELECTROCHIMICA ACTA, 2014, 149 :370-385
[25]   Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte [J].
Li, Zhe ;
Zhang, Shiguo ;
Terada, Shoshi ;
Ma, Xiaofeng ;
Ikeda, Kohei ;
Kamei, Yutaro ;
Zhang, Ce ;
Dokko, Kaoru ;
Watanabe, Masayoshi .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (25) :16053-16062
[26]   Electrochemical properties of the polyethylene oxide-Li(CF3SO2)2N and ionic liquid composite electrolyte [J].
Wang, H. ;
Imanishi, N. ;
Hirano, A. ;
Takeda, Y. ;
Yamamoto, O. .
JOURNAL OF POWER SOURCES, 2012, 219 :22-28
[27]   Charge-Discharge Behavior of Graphite Negative Electrodes in FSA-Based Ionic Liquid Electrolytes: Comparative Study of Li-, Na-, K-Ion Systems [J].
Yamamoto, Takayuki ;
Yadav, Alisha ;
Nohira, Toshiyuki .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)
[28]   A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge [J].
Han, Shaojie ;
Xia, Yonggao ;
Wei, Zhen ;
Qiu, Bao ;
Pan, Lingchao ;
Gu, Qingwen ;
Liu, Zhaoping ;
Guo, Zhiyong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) :11930-11939
[29]   The effect of the LiCoO2/Li7La3Zr2O12 ratio on the structure and electrochemical properties of nanocomposite cathodes for all-solid-state lithium batteries [J].
Wakayama, Hiroaki ;
Kawai, Yasuaki .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) :18816-18822
[30]   Effect of Nano TiO2 on structural, Thermal and Ionic Transport properties of PEO-PMMA polymer blend Electrolyte for Li-ion batteries [J].
Farheen, Shazia ;
Mathad, R. D. .
MATERIALS TODAY-PROCEEDINGS, 2016, 3 (10) :3632-3636