A Hybrid Assembly of MXene with NH2-Si Nanoparticles Boosting Lithium Storage Performance

被引:18
作者
Cui, Yu [1 ]
Wang, Jie [1 ]
Wang, Xin [1 ]
Qin, Jinwen [1 ]
Cao, Minhua [1 ]
机构
[1] Beijing Inst Technol, Minist Educ China, Key Lab Cluster Sci, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene; silicon; self-assembly; lithium-ion batteries; CARBIDE MXENE; ION; SILICON; TI3C2; GRAPHENE; ANODES; NANOSHEETS; CAPACITY; DESIGN; SI;
D O I
10.1002/asia.202000017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A facile hybrid assembly between Ti3C2Tx MXene nanosheets and (3-aminopropyl) triethoxylsilane-modified Si nanoparticles (NH2-Si NPs) was developed to construct multilayer stacking of Ti3C2Tx nanosheets with NH2-Si NPs assembling together (NH2-Si/Ti3C2Tx). NH2-Si/Ti3C2Tx exhibits a significantly enhanced lithium storage performance compared to pristine Si, which is attributed to the robust crosslinking architecture and considerably improved electrical conductivity as well as shorter Li+ diffusion pathways. The optimized NH2-Si/Ti3C2Tx anode with Ti3C2Tx: NH2-Si mass ratio of 4 : 1 displays an enhanced capacity (864 mAh g(-1) at 0.1 C) with robust capacity retention, which is significantly higher than those of NH2-Si NPs and Ti3C2Tx anodes. Furthermore, this work demonstrates the important effect of the MXene-based electrode architecture on the electrochemical performance and can guide future work on designing high-performance Si/MXene hybrids for energy storage applications.
引用
收藏
页码:1376 / 1383
页数:8
相关论文
共 39 条
[1]   Carbon-Coated Si Nanoparticles Anchored between Reduced Graphene Oxides as an Extremely Reversible Anode Material for High Energy-Density Li-Ion Battery [J].
Agyeman, Daniel Adjei ;
Song, Kyeongse ;
Lee, Gi-Hyeok ;
Park, Mihui ;
Kang, Yong-Mook .
ADVANCED ENERGY MATERIALS, 2016, 6 (20)
[2]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[3]   Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity [J].
Banda, Harish ;
Perie, Sandy ;
Daffos, Barbara ;
Taberna, Pierre-Louis ;
Dubois, Lionel ;
Crosnier, Olivier ;
Simon, Patrice ;
Lee, Daniel ;
De Paepe, Gael ;
Duclairoir, Florence .
ACS NANO, 2019, 13 (02) :1443-1453
[4]   Characterization of silicon carbide and silicon powders by XPS and zeta potential measurement [J].
Binner, J ;
Zhang, Y .
JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (02) :123-126
[5]   Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes [J].
Chen, Xilin ;
Li, Xiaolin ;
Ding, Fei ;
Xu, Wu ;
Xiao, Jie ;
Cao, Yuliang ;
Meduri, Praveen ;
Liu, Jun ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
NANO LETTERS, 2012, 12 (08) :4124-4130
[6]   In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells [J].
Chen, Yifan ;
Wang, Dejun ;
Lin, Yanhong ;
Zou, Xiaoxin ;
Xie, Tengfeng .
ELECTROCHIMICA ACTA, 2019, 316 :248-256
[7]   Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance [J].
Ghidiu, Michael ;
Lukatskaya, Maria R. ;
Zhao, Meng-Qiang ;
Gogotsi, Yury ;
Barsoum, Michel W. .
NATURE, 2014, 516 (7529) :78-U171
[8]   RETRACTED: Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2Tx MXene (Retracted article. See vol. 15, pg. 7835, 2021) [J].
Hu, Minmin ;
Hu, Tao ;
Li, Zhaojin ;
Yang, Yi ;
Cheng, Renfei ;
Yang, Jinxing ;
Cui, Cong ;
Wang, Xiaohui .
ACS NANO, 2018, 12 (04) :3578-3586
[9]   Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study [J].
Hu, Tao ;
Wang, Jiemin ;
Zhang, Hui ;
Li, Zhaojin ;
Hu, Minmin ;
Wang, Xiaohui .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (15) :9997-10003
[10]   Hydrolytically stable phosphorylated hybrid silicas for proton conduction [J].
Jin, Yonggang ;
Qiao, Shizhang ;
da Costa, Joao C. Diniz ;
Wood, Barry J. ;
Ladewig, Bradley P. ;
Lu, Gao Qing .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3304-3311