Efficient estimation of eigenvalue counts in an interval

被引:65
作者
Di Napoli, Edoardo [1 ]
Polizzi, Eric [2 ]
Saad, Yousef [3 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[3] Univ Minnesota, Comp Sci & Engn, St Paul, MN USA
基金
美国国家科学基金会;
关键词
eigenvalue count; subspace projector; stochastic trace estimate; FEAST; Chebyshev polynomials; eigenproblem resolvent; MATRIX; DENSITIES; STATES; TRACE; ALGORITHMS; FEAST;
D O I
10.1002/nla.2048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Estimating the number of eigenvalues located in a given interval of a large sparse Hermitian matrix is an important problem in certain applications, and it is a prerequisite of eigensolvers based on a divide-and-conquer paradigm. Often, an exact count is not necessary, and methods based on stochastic estimates can be utilized to yield rough approximations. This paper examines a number of techniques tailored to this specific task. It reviews standard approaches and explores new ones based on polynomial and rational approximation filtering combined with a stochastic procedure. We also discuss how the latter method is particularly well-suited for the FEAST eigensolver. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:674 / 692
页数:19
相关论文
共 35 条
[1]  
Angot A., 1949, COMPLEMENTS MATH
[2]  
[Anonymous], 1969, An introduction to the approximation of functions
[3]  
[Anonymous], 1981, COMPUTER SOLUTION LA
[4]   Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix [J].
Avron, Haim ;
Toledo, Sivan .
JOURNAL OF THE ACM, 2011, 58 (02)
[5]   An estimator for the diagonal of a matrix [J].
Bekas, C. ;
Kokiopoulou, E. ;
Saad, Y. .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (11-12) :1214-1229
[6]  
Davis T. A., 2006, DIRECT METHODS SPARS
[7]  
Futamura Yasunori, 2010, JSIAM Letters, V2, P127
[8]  
Golub GH., 2012, MATRIX COMPUTATIONS, V3
[9]   Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions [J].
Halko, N. ;
Martinsson, P. G. ;
Tropp, J. A. .
SIAM REVIEW, 2011, 53 (02) :217-288
[10]   A STOCHASTIC ESTIMATOR OF THE TRACE OF THE INFLUENCE MATRIX FOR LAPLACIAN SMOOTHING SPLINES [J].
HUTCHINSON, MF .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (02) :433-450