Evaluation of Proximal Policy Optimization with Extensions in Virtual Environments of Various Complexity

被引:0
作者
Rauch, Robert [1 ]
Korecko, Stefan [1 ]
Gazda, Juraj [1 ]
机构
[1] Tech Univ Kosice, Dept Comp & Informat, FEEI, Kosice, Slovakia
来源
2022 32ND INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA) | 2022年
关键词
reinforcement learning; Proximal Policy Optimization; evaluation; virtual environment; Unity; ML-Agents;
D O I
10.1109/RADIOELEKTRONIKA54537.2022.9764924
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an evaluation of the Proximal Policy Optimization deep reinforcement learning algorithm alone and with several extensions. The extensions used are imitation learning and intrinsic curiosity module. The evaluation takes place in a custom-made racing game, where the goal of an agent, a car, is to complete a racing circuit. The game is implemented in the Unity game engine and the machine learning algorithms are provided by the ML-Agents toolkit. The game provides three levels with racing circuits of different complexity. The results described focus on the hyperparameter search, training progress for all the combinations of the algorithm and the extensions and evaluation in the inference mode.
引用
收藏
页码:251 / 255
页数:5
相关论文
共 13 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Self-driving cars: A survey [J].
Badue, Claudine ;
Guidolini, Ranik ;
Carneiro, Raphael Vivacqua ;
Azevedo, Pedro ;
Cardoso, Vinicius B. ;
Forechi, Avelino ;
Jesus, Luan ;
Berriel, Rodrigo ;
Paixao, Thiago M. ;
Mutz, Filipe ;
Veronese, Lucas de Paula ;
Oliveira-Santos, Thiago ;
De Souza, Alberto F. .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
[3]  
Bhattacharyya RP, 2018, IEEE INT C INT ROBOT, P1534, DOI 10.1109/IROS.2018.8593758
[4]  
Emuna R, 2020, Arxiv, DOI [arXiv:2006.04218, DOI 10.48550/ARXIV.2006.04218]
[5]   Centralized Cooperation for Connected and Automated Vehicles at Intersections by Proximal Policy Optimization [J].
Guan, Yang ;
Ren, Yangang ;
Li, Shengbo Eben ;
Sun, Qi ;
Luo, Laiquan ;
Li, Keqiang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) :12597-12608
[6]  
Haarnoja T, 2019, Arxiv, DOI arXiv:1812.05905
[7]  
Ho J, 2016, ADV NEUR IN, V29
[8]  
Juliani A., 2018, Unity: A general platform for intelligent agents
[9]  
Muzahid Abu Jafar Md, 2021, 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), P200, DOI 10.1109/ICSECS52883.2021.00043
[10]  
Paszke A, 2019, ADV NEUR IN, V32