Profitability of low-temperature power electronics and potential applications

被引:6
作者
Buettner, Stefanie [1 ]
Maerz, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Chair Power Elect, Nurnberg, Germany
关键词
Carnot efficiency; Cryogenic; Power electronics; Profitability; Refrigerators; Cryoelectronics;
D O I
10.1016/j.cryogenics.2021.103392
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article presents an investigation of the profitability of cryogenic power electronics at different cooling and ambient temperatures. Thermodynamic fundamentals of low-temperature refrigeration processes are considered and the Carnot efficiencies of state-of-the-art refrigerators are evaluated in order to establish the necessary power loss reduction for energetic profitability of low-temperature to cryogenic power electronic systems down to 77 K. In this context, special attention is paid to two loss contributions in a power electronic system which, based on investigations on active and passive components, show the greatest potential for loss reduction at low temperatures. These are the on-state losses of Si and GaN transistors and the DC winding losses of inductors. The analysis shows that over the entire low temperature range, the loss reduction in a cryogenic converter can hardly compensate for the electrical power required to provide the necessary cooling capacity when cooling against an ambient temperature of 300 K.
引用
收藏
页数:7
相关论文
共 26 条
[1]  
Bar-Cohen Y., 2016, Low Temperature Materials and Mechanisms
[2]  
Barth C, 2017, APPL POWER ELECT CO, P717, DOI 10.1109/APEC.2017.7930773
[3]   Design, Operation, and Loss Characterization of a 1-kW GaN-Based Three-Level Converter at Cryogenic Temperatures [J].
Barth, Christopher B. ;
Foulkes, Thomas ;
Azofeifa, Oscar ;
Colmenares, Juan ;
Coulson, Keith ;
Miljkovic, Nenad ;
Pilawa-Podgurski, Robert C. N. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) :12040-12052
[4]   Comparison of the Efficiency of Superconducting and Conventional Transformers [J].
Berger, A. ;
Cherevatskiy, S. ;
Noe, M. ;
Leibfried, T. .
9TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS 09), 2010, 234
[5]   Dissecting the exergy balance of a hydrogen liquefier: Analysis of a scaled-up claude hydrogen liquefier with mixed refrigerant pre-cooling [J].
Berstad, David ;
Skaugen, Geir ;
Wilhelmsen, Oivind .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (11) :8014-8029
[6]   Research of the cold shield in cryogenic liquid storage [J].
Chen, L. B. ;
Zheng, J. P. ;
Wu, X. L. ;
Cui, C. ;
Zhou, Y. ;
Wang, J. J. .
ADVANCES IN CRYOGENIC ENGINEERING, 2017, 278
[7]   An Efficient Boost Chopper Integrated With Cryogenic MOSFETs and HTS Inductor [J].
Chen, Xiao Yuan ;
Jin, Jian Xun ;
Tang, Mian Gang ;
Feng, Juan ;
Luo, Hong Yan ;
Li, Lin Yu ;
Xu, Qiang ;
Zou, Hui Lin .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (07)
[8]   Experimental Investigations of State-of-the-Art 650-V Class Power MOSFETs for Cryogenic Power Conversion at 77K [J].
Chen, Yu ;
Chen, Xiao-Yuan ;
Li, Tao ;
Feng, Ying-Jun ;
Liu, Yang ;
Huang, Qin ;
Li, Meng-Yao ;
Zeng, Lei .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01) :8-18
[9]   An Outlook of the Use of Cryogenic Electric Machines Onboard Aircraft [J].
Dubensky, A. A. ;
Kovalev, K. L. ;
Larionoff, A. E. ;
Modestov, K. A. ;
Penkin, V. T. ;
Poltavets, V. N. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
[10]  
Gui HD, 2020, IEEE T POWER ELECTR, V35, P5144, DOI [10.1109/tpel.2019.2944781, 10.1109/TPEL.2019.2944781]