Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading

被引:27
作者
Aleman-Dominguez, M. E. [1 ]
Ortega, Z. [1 ]
Benitez, A. N. [1 ]
Vilarino-Feltrer, G. [2 ]
Gomez-Tejedor, J. A. [2 ,3 ]
Valles-Lluch, A. [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Ingn Proc, Edificio Fabricac Integrada, Las Palmas Gran Canaria, Spain
[2] Univ Politecn Valencia, Ctr Biomat & Tissue Engn CBIT, Valencia, Spain
[3] Biomed Res Networking Ctr Bioengn Biomat & Nanome, Valencia, Spain
关键词
biomedical applications; polysaccharides; swelling; thermogravimetric analysis (TGA); thermoplastics; TISSUE ENGINEERING APPLICATIONS; THERMAL-DEGRADATION; IN-VIVO; SCAFFOLDS; POLY(EPSILON-CAPROLACTONE); CRYSTALLIZATION; CHITOSAN; BLENDS; PLASMA; STABILITY;
D O I
10.1002/app.46134
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carboxymethyl cellulose (CMC) is herein proposed as additive in polycaprolactone (PCL) matrices to obtain composites with tunable hydrophilicity. This composite material can be obtained by compression molding. The thermogravimetric degradation profile, the FTIR spectra, values of the water contact angle (WCA), water and phosphate-buffered saline uptake values, and the results of a cytotoxicity assessment are presented herein. The concentrations of CMC in the groups of samples are 0, 2, 5, 10, and 20%. The WCA on the prewetted state decreases proportionally to the concentration of the additive. These results evidence the possibility of obtaining a PCL-based composite with tunable hydrophilicity. Besides, the biological assessment does not reveal any cytotoxic effects. Therefore, the addition of CMC entails an innovative strategy to control the water affinity of PCL in biomedical applications where such feature is required to improve diffusion of biological medium through, or accelerate degradation by hydrolysis. (c) 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46134.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Hydrogen bonding, miscibility, crystallization, and thermal stability in blends of biodegradable polyhydroxyalkanoates and polar small molecules of 4-tert-butylphenol [J].
Chen, C ;
Yu, PHF ;
Cheung, MK .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (02) :736-745
[2]  
CHIU SM, 1989, CANCER RES, V49, P910
[3]  
Cold Spring Harbor Protocols, 2006, COLD SPRING HARBOR P
[4]   Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate) [J].
Conejero-Garcia, Alvaro ;
Rivero Gimeno, Hector ;
Moreno Saez, Yolanda ;
Vilarino-Feltrer, Guillermo ;
Ortuno-Lizaran, Isabel ;
Valles-Lluch, Ana .
EUROPEAN POLYMER JOURNAL, 2017, 87 :406-419
[5]   Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends [J].
Diez-Pascual, Ana M. ;
Diez-Vicente, Angel L. .
JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (04) :600-612
[6]   FTIR study of polycaprolactone chain organization at interfaces [J].
Elzein, T ;
Nasser-Eddine, M ;
Delaite, C ;
Bistac, S ;
Dumas, P .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 273 (02) :381-387
[7]   Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering [J].
Gaihre, Bipin ;
Jayasuriya, Ambalangodage C. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 :733-743
[8]   Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites [J].
Hejna, Aleksander ;
Formela, Krzysztof ;
Saeb, Mohammad Reza .
INDUSTRIAL CROPS AND PRODUCTS, 2015, 76 :725-733
[9]   Thermal properties and crystallization behaviour of blends of poly(ε-caprolactone) with chitin and chitosan [J].
Honma, T ;
Senda, T ;
Inoue, Y .
POLYMER INTERNATIONAL, 2003, 52 (12) :1839-1846
[10]   A MSCs-laden polycaprolactone/collagen scaffold for bone tissue regeneration [J].
Jang, Chul Ho ;
Ahn, Seung Hyun ;
Yang, Gi-Hoon ;
Kim, Geun Hyung .
RSC ADVANCES, 2016, 6 (08) :6259-6265